精英家教网 > 高中数学 > 题目详情
已知tanα=-
12
,求sin2α+2sinαcosα-3cos2α的值.
分析:所求式子分母看做“1”,利用同角三角函数间的基本关系化简为sin2α+cos2α,分子分母除以cos2α化简,将tanα的值代入计算即可求出值.
解答:解:∵tanα=-
1
2

∴原式=
sin2α+2sinαcosα-3cos2α
sin2α+cos2α
=
tan2α+2tanα-3
tan2α+1
=
1
4
-1-3
1
4
+1
=-3.
点评:此题考查了三角函数的化简求值,熟练掌握同角三角函数间的基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=
12
,则sinαcosα-2sin2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanθ=- 
1
2
,求
1+2sinθcosθ
sin2θ-cos2θ
的值.
(2)化简:
sin(2π-α)cos(
11π
2
-α)
sin(-π-α)sin(
2
+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
12
,求sin2β-3sinβcosβ+4cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
2
,则
(sinα+cosα)2
cos2α
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
2
,tan(α-β)=-
1
3
,α,β均为锐角,则β等于
 

查看答案和解析>>

同步练习册答案