精英家教网 > 高中数学 > 题目详情

设y=数学公式+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,则x的取值范围是________.

(0,)∪(8,+∞)
分析:构造函数f(t)=(log2x-1)t+(log2x)2-2log2x+1,根据t∈[-2,2]时,f(t)恒为正值,可得f(-2)>0,f(2)>0,即可得到不等式,由此可确定x的取值范围.
解答:构造函数f(t)=(log2x-1)t+(log2x)2-2log2x+1,
∵t∈[-2,2]时,f(t)恒为正值,
∴f(-2)>0,f(2)>0
∴-2(log2x-1)+(log2x)2-2log2x+1>0,2(log2x-1)+(log2x)2-2log2x+1>0
∴(log2x)2-4log2x+3>0,(log2x)2-1>0
∴log2x<-1或log2x>3,
即0<x<或x>8.
故答案为:(0,)∪(8,+∞)
点评:本题考查复合函数的单调性,解题的关键是变换主元,构建新函数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C以C(t,
2t
)(t∈R,t≠0)
为圆心且经过原点O.
(1)若t=2,写出圆C的方程;
(2)在(1)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C以C(t,
2t
)(t∈R,t≠0)
为圆心且经过原点O.
(Ⅰ)若直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右顶点分别为A、B,右焦点为F(
3
,0),
一条渐近线的方程为y=-
2
2
x
,点P为双曲线上不同于A、B的任意一点,过P作x轴的垂线交双曲线于另一点Q.
(I)求双曲线C的方程;
(Ⅱ)求直线AP与直线BQ的交点M的轨迹E的方程;
(Ⅲ)过点N(l,0)作直线l与(Ⅱ)中轨迹E交于不同两点R、S,已知点T(2,0),设
NR
NS
,当λ∈[-2,-1]时,求|
TR
+
TS
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π
3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且
OG
OH
=0
,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案