精英家教网 > 高中数学 > 题目详情

是否存在实数,使得的最大值为,若存在,求出的值;若不存在,请说明理由.

解析试题分析:由题设可假定存在,若能说明其成立则进而可求得其值,若能推出矛盾则说明其不存在.
,结合的取值范围,分类讨论的取值范围,从而使得问题迎刃解决.分三种情况来讨论:ⅰ)当时;ⅱ)当时;ⅲ)当时.
试题解析: 
假设存在满足条件的.
ⅰ)当时, 
,得 ( 舍去)
ⅱ)当时, 
 ,得 ( 舍去)
ⅲ)当时, 
 ,得 (舍去) (舍去)
综上,存在 使得 的最大值为.

考点:函数参数存在性开放性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株为样本,统计结果如下:

 
高茎
矮茎
合计
圆粒
11
19
30
皱粒
13
7
20
合计
24
26
50
(1)现采用分层抽样方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;   
(2)根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考):
P(K2≥k)
0.15
0.10
0.050
0.025
0.010
0.001
k
2.072
2.706
3.841
5.024
6.635
10.828
,其中n=a+b+c+d为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数
(1)求函数的最小值;
(2)问是否存在这样的正数,当时,,且的值域为?若存在,求出所有的的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

销售甲、乙两种商品所得利润分别为P(单位:万元)和Q(单位:万元),它们与投入资金(单位:万元)的关系有经验公式, .  今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资(单位:万元)
(1)试建立总利润(单位:万元)关于的函数关系式,并指明函数定义域;
(2)如何投资经营甲、乙两种商品,才能使得总利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)化简
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数,则的值是___________

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,
f(x)= (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案