精英家教网 > 高中数学 > 题目详情

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

(1)的最大值为,(2)时,无公共点,时,有一个公共点,时,有两个公共点;(3)当时函数的图象恒在函数的图象的上方.

解析试题分析:(1)当时,由图形可知一次函数与对数函数相切时,取最大值,可以用导数的几何意义完成;(2)要研究两函数的公共点个数,由函数的定义域可知只需考虑情况,当时,令,则原命题等价于研究直线与函数的图象的公共点的个数,因此利用导数研究函数图象变化情况,易得结论;(3)把问题转化为:时恒成立问题,要注意对取值情况的讨论.
试题解析:⑴,由一次函数与对数函数图象可知两图象相切时取最大值,设切点横坐标为, 即实数的最大值为,⑵,即原题等价于直线与函数的图象的公共点的个数,递增且递减且时,无公共点,时,有一个公共点,时,有两个公共点;⑶函数的图象恒在函数的上方;即时恒成立,①图象开口向下,即时不可能恒成立,②,由⑴可得恒成立,不成立,③时,若,由⑵可得无最小值,故不可能恒成立,若,故恒成立,若,故恒成立,综上,时,函数的图象恒在函数的图象的上方.
考点:导数的几何意义,用导数分析函数的单调性,最值,恒成立问题,渗透数形结合思想,分类讨论的数学思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,且
(1)求的解析式;
(2)画出的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数,使得的最大值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某房地产开发商投资81万元建一座写字楼,第一年需维护费用为1万元,以后每年增加2万元,若把写字楼出租,每年收入租金30万元.
(1)开发商最早在第几年获取纯利润?
(2)若干年后开发商为了投资其它项目,有两种处理方案:①纯利润最大时,以10万元出售该楼;②年平均利润最大时以46万元出售该楼.问哪种方案更优?并说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数的值域为R,则实数k的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)=loga| x |在(- ∞,0)上单调递减,则f(-2)   f(a+1).(填写“<”,“=”,“>”之一)

查看答案和解析>>

同步练习册答案