精英家教网 > 高中数学 > 题目详情
13.已知集合A={y|y=log2x,x>1},B={y|2y-1<0},则A∩B=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.(0,+∞)

分析 求出A中y的范围确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由A中y=log2x,x>1,得到y>0,即A=(0,+∞),
由B中不等式解得:y<$\frac{1}{2}$,即B=(-∞,$\frac{1}{2}$),
则A∩B=(0,$\frac{1}{2}$),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.下列命题中,正确的序号是  ①
①函数f(x)=$\frac{2x+1}{x-2}$的对称中心为(2,2).
②向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,则$\overrightarrow a$⊥$\overrightarrow b$
③将函数y=2sin(2x+$\frac{π}{4}$)向右平移$\frac{3}{8}$π个单位,将图象上每一点横坐标缩短为原来的$\frac{1}{2}$倍,所得函数为y=2cos4x
④定义运算$|\begin{array}{l}{a_1}\;\;\;\;{a_2}\\{b_1}\;\;\;\;{b_2}\end{array}|$=a1b2-a2b1,则函数f(x)=$|\begin{array}{l}{x^2}+3x\;\;\;\;\;1\\ x\;\;\;\;\;\;\;\;\;\;\;\frac{1}{3}x\end{array}|$的图象在(1,$\frac{1}{3}$)处的切线方程为6x-3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设U=R,A={x|x>0},B={x|x>1},则A∪∁UB=(  )
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在三角形ABC中,已知AB=2,AC=3,D是BC边上靠近B点的四等分点,点E是AC边上靠近点A点的三等分点,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=(  )
A.-$\frac{9}{4}$B.$\frac{4\sqrt{2}}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数$f(x)=\left\{\begin{array}{l}1-{x^2},x<0\\{x^2}-x-1,x>0\end{array}\right.$,则f(-1)+f(2)的值为(  )
A.5B.-1C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x|x2-3x≥0},N={x|1<x≤3},则(∁RM)∩N=(  )
A.[0,1)B.(0,3]C.(1,3)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察如表数表的规律(仿杨辉三角:下一行的数等于上一行肩上相邻两数的和):

该数表最后一行只有一个数,则这个数是22015×2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx,x1,x2∈(0,$\frac{1}{e}$),且x1<x2,则下列结论中正确的是(  )
A.(x1-x2)[f(x1)-f(x2)]<0B.f($\frac{{x}_{1}+{x}_{2}}{2}$)<f($\frac{f({x}_{1})+f({x}_{2})}{2}$)
C.x1f(x2)>x2f(x1D.x2f(x2)>x1f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为50元/平方米,底面的建造成本为100元/平方米.该蓄水池总建造成本为10800π元.(π为圆周率)
(Ⅰ)将V表示为r的函数V(r),并求该函数的定义域;
(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

同步练习册答案