精英家教网 > 高中数学 > 题目详情
已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
12
)x
图象上.
(Ⅰ)若数列{an}是等差数列,证明:数列{bn}是等比数列;
(Ⅱ)设an=n(n为正整数),过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试求最小的实数t,使cn≤t对一切正整数n恒成立.
分析:(Ⅰ)由点在图象上,则有bn=(
1
2
)an
,由等比数列的定义,则有
bn+1
bn
=(
1
2
)an+1-an=(
1
2
)d
从而得到结论.
(Ⅱ)有an=n,则有bn=(
1
2
)n
,则由Pn(n,(
1
2
)n)
Pn+1(n+1,(
1
2
)n+1)
,其斜率kPnPn+1=
(
1
2
)
n+1
-(
1
2
)
n
(n+1)-n
=-(
1
2
)n+1
,求得直线PnPn+1的方程为,再分别求得与坐标轴的交点,建立面积模型cn=
1
2
•|OAn|•|OBn|=
(n+2)2
2n+2
,再由作差法判断数列的单调性,求得其最大值,从而解得t的范围.
解答:解:(Ⅰ)设数列{an}的公差为d,由已知bn=(
1
2
)an
,(1分)
所以,
bn+1
bn
=(
1
2
)an+1-an=(
1
2
)d
(常数),(3分)
所以,数列{bn}是等比数列.(4分)
(Ⅱ)若an=n,则bn=(
1
2
)n

Pn(n,(
1
2
)n)
Pn+1(n+1,(
1
2
)n+1)
kPnPn+1=
(
1
2
)
n+1
-(
1
2
)
n
(n+1)-n
=-(
1
2
)n+1
,(6分)
直线PnPn+1的方程为y-(
1
2
)n=-(
1
2
)n+1(x-n)
,(7分),
它与x轴,y轴分别交于点An(n+2,0),Bn(0,
n+2
2n+1
)
cn=
1
2
•|OAn|•|OBn|=
(n+2)2
2n+2
cn-cn+1=
(n+2)2
2n+2
-
(n+3)2
2n+3
=
n2+2n-1
2n+3
>0

∴数列{cn}随n增大而减小∴cnc1=
9
8
,即最小的实数t的值为
9
8
点评:本题主要考查函数与数列的综合运用,主要涉及了点与曲线的关系,数列的定义,及函数模型的建立与解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*),其中an,bn分别为等差数列和等比数列,O为坐标原点,P1是线段AB的中点.
(1)求a1,b1的值;
(2)判断点P1,P2,P3,…,Pn,…能否在同一条直线上,并证明你的结论;
(3)设数列an的公差为2,在数列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳一模)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为    (    )

A.(3×1006,-4[1-()1006])                   B.(3×1004,-8[1-()1004])

C.(3×1002,-4[1-()1002])                   D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为(    )

A.(3×1006,-4[1-()1006])         B.(3×1004,-8[1-()1004])

C.(3×1 002,-4[1-()1002])         D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源:2007年广东省深圳市高考数学一模试卷(文科)(解析版) 题型:解答题

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

同步练习册答案