精英家教网 > 高中数学 > 题目详情
已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.
【答案】分析:(Ⅰ)P1是线段AB的中点,且不共线,由平面向量基本定理,能求出a1,b1的值.
(Ⅱ) 由,设{an}的公差为d,{bn}的公比为q,则由于P1,P2,P3,…,Pn,…互不相同,所以d=0,q=1不会同时成立;若d=0,则,所以P1,P2,P3,…,Pn,…都在直线上.由此能求出当d≠0且q≠1时,P1,P2,P3,…,Pn,…不共线. 
(Ⅲ)设Pn(an,bn)都在指数函数y=ax(a>0,a≠1)的图象上,则.令n=1,则,于是,有唯一解.由此能够得到当对于给定的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在指数函数的图象上.
解答:解:(Ⅰ)P1是线段AB的中点…(1分)
,且不共线,
由平面向量基本定理,知:…(3分)
(Ⅱ) 由
设{an}的公差为d,{bn}的公比为q,则由于P1,P2,P3,…,Pn,…互不相同,所以d=0,q=1不会同时成立; (4分)
若d=0,则,⇒P1,P2,P3,…,Pn,…都在直线上;           …(5分)
若q=1,则为常数列,⇒P1,P2,P3,…,Pn,…都在直线上;             …(6分)
若d≠0且q≠1,P1,P2,P3,…,Pn,…共线?=(an-an-1,bn-bn-1)与共线(n>1,n∈N*)?(an-an-1)(bn+1-bn)-(an+1-an)(bn-bn-1)=0?d(bn+1-bn)-d(bn-bn-1)=0?(bn+1-bn)=(bn-bn-1)?q=1与q≠1矛盾,
∴当d≠0且q≠1时,P1,P2,P3,…,Pn,…不共线.      …(9分)
(Ⅲ)设Pn(an,bn)都在指数函数y=ax(a>0,a≠1)的图象上,则(10分)
令n=1,则,…(11分)
于是,有唯一解,…(13分)
由于d≠0,⇒q≠1,从而满足条件“P1,P2,P3,…,Pn,…互不相同”.
∴当对于给定的{an},都能找到唯一的一个{bn},
使得P1,P2,P3,…,Pn,…,都在指数函数的图象上.…(14分)
点评:本题考查数列与解析几何间的关系,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案