精英家教网 > 高中数学 > 题目详情
已知数列{an}前n项和Sn=2n2-n
(1)求其通项公式an
(2)若数列{bn}是等差数列,且bn=
Snn+c
(c≠0),求数列{an•2bn}的前n项和Tn
分析:(1)由数列的前n项和分类求出a1和an(n≥2),验证a1后可得通项公式;
(2)分别求出数列{bn}的前3项,由等差中项的概念求出c,代入后利用错位相减法求数列{an•2bn}的前n项和Tn
解答:解:(1)由Sn=2n2-n
当n=1时,a1=S1=1.
当n≥2时,an=Sn-Sn-1=(2n2-n)-[2(n-1)2-(n-1)]
=4n-3.
n=1时成立.
∴an=4n-3;
(2)∵数列{bn}是等差数列,
由bn=
Sn
n+c
,取n=1得,b1=
1
1+c

取n=2得,b2=
S2
2+c
=
6
2+c

取n=3得,b3=
S3
3+c
=
15
3+c

1
1+c
+
15
3+c
=
12
2+c
,解得c=-
1
2

∴b1=2,公差d=2.
∴bn=2+2(n-1)=2n.
则an•2bn=(4n-3)•4n
Tn=1×41+5×42+…+(4n-7)×4n-1+(4n-3)×4n
4Tn=1×42+5×43+…+(4n-7)×4n+(4n-3)×4n+1
①-②得:-3Tn=4+4×42+4×43+…+4×4n-(4n-3)×4n+1
Tn=-
4
9
(4n-1)+
4n-3
3
×4n+1
点评:本题考查了数列的通项公式,考查了数列的和,训练了错位相减法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前 n项和为Sn,且Sn=n2
(1)求{an}的通项公式    
(2)设 bn=
1anan+1
,求数列{bn}的前 n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn和通项an满足Sn=-
1
2
(an-1)

(1)求数列{an}的通项公式; 
(2)试证明Sn
1
2

(3)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2n-1,则数列{an}的奇数项的前n项的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2an+2n
(Ⅰ)证明数列{
an
2n-1
}
是等差数列,并求{an}的通项公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求数列{bn}是否存在最大值项,若存在,说明是第几项,若不存在,请说明理由;
(Ⅲ)设Tn=|S1|+|S2|+|S3|+…+|Sn|,试比较
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案