| A. | 2 | B. | 4 | C. | 6 | D. | 9 |
分析 不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥16对任意正实数x、y恒成立,可知:16≤[(x+y)($\frac{1}{x}$+$\frac{a}{y}$)]min.令f(x)=(x+y)($\frac{1}{x}$+$\frac{a}{y}$),(a>0).利用基本不等式即可得出其最小值.
解答 解:∵不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥16对任意正实数x、y恒成立,
∴16≤[(x+y)($\frac{1}{x}$+$\frac{a}{y}$)]min.
令f(x)=(x+y)($\frac{1}{x}$+$\frac{a}{y}$)(a>0).
则f(x)=a+1+$\frac{ax}{y}$+$\frac{y}{x}$≥a+1+2 $\sqrt{\frac{ax}{y}•\frac{y}{x}}$=a+1+2$\sqrt{a}$.当且仅当y=$\sqrt{a}$x取等号.
∴a+1+2$\sqrt{a}$≥16,解得a≥9.
因此正实数a的最小值为9.
故选:D.
点评 本题考查了恒成立问题的等价转化、基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n∥α,则m∥n | B. | 若m∥n,n⊥α,则m⊥α | C. | 若m∥α,m∥β,则α∥β | D. | 若m∥α,α⊥β,则m⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 以上均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{1}{2},2}]$ | B. | $[{-3,-\frac{1}{2}}]$ | C. | $[-\frac{1}{2},+∞)$ | D. | $(-∞,-\frac{1}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com