精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1 D1. 过EH的平面与棱BB1,CC1相交,交点分别为F,G。

(I)           证明:AD∥平面EFGH;
(II)        设AB=2AA1 ="2" a .在长方体ABCD-A1B1C1D1内随机选取一点。记该点取自几何体A1ABFE-D1DCGH内的概率为p,当点E,F分别在棱A1B1上运动且满足EF=a时,求p的最小值.
(I)见解析(II)p的最小值等于7/8
本小题主要考察直线与直线、直线与平面的位置关系,以及几何体的体积、几何概念等基础知识,考察空间想象能力、推理论证能力、运算求解能力,考察函数与方程思想、形数结合思想、化归与转化思想、必然与或然思想。满分12分
解法一:
(I)                  证明:在长方体ABCD-A1B1C1D1中,AD∥A1 D1
又∵EH∥A1 D1,∴AD∥EH.
∵AD¢平面EFGH
EH 平面EFGH
∴AD//平面EFGH.
(II)               设BC=b,则长方体ABCD-A1B1C1D1的体积V=AB·AD·AA1 =2a2b,
几何体EB1F-HC1G的体积V1 =(1/2EB1 ·B1F)·B1C1 =b/2·EB­1 ·B1 F
∵EB12 + B1 F2=a2
∴EB12 + B1 F2≤ (EB12 + B1 F2)/2 = a2 / 2,当且仅当EB­1 =B1 F=  a时等号成立
从而V1 ≤ a2b /4 .
故 p=1-V1/V ≥=
解法二:
(I)                   同解法一
(II)                设BC=b,则长方体ABCD-A1B1C1D1的体积V=AB·AD·AA1 =2a2b ,
几何体EB1F-HC1G的体积
V1=(1/2 EB­1 ·B1 F)·B1C1 =b/2 EB­1 ·B1 F
设∠B1EF=θ(0°≤θ≤90°),则EB­1 =" a" cosθ,B1 F ="a" sinθ
故EB­1 ·B1 F = a2 sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.
从而
∴p=1- V1/V≥=,当且仅当sin 2θ=1即θ=45°时等号成立.
所以,p的最小值等于7/8
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(I)证明:AB1⊥BC1
(II)求点B到平面AB1C1的距离;
(III)求二面角C1—AB1—A1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在直三棱柱中,E上,且分别为的中点.
(1)求证:平面
(2)求异面直线所成的角;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,四棱柱ABCD—ABCD中,AD平面ABCD,底面ABCD是边长为1的正方形,侧棱AA=2.
(1)求证:CD∥平面ABBA
(2)求直线BD与平面ACD所成角的正弦值;
(3)求二面角D—AC一A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,是棱上的动点,中点,
(Ⅰ)求证:平面
(Ⅱ)若二面角的大小是,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)在四棱锥P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD

PA=2AB
(1)求证:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



本题满分15分)如图,在矩形中,点分别
在线段上,.沿直线
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四
边形向上翻折,使重合,求线段
的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,三棱柱中,侧面底面,
,O中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,
确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,的中点,上的一点,

(Ⅰ)证明:为异面直线的公垂线;
(Ⅱ)设异面直线的夹角为45°,求二面角的大小.

查看答案和解析>>

同步练习册答案