精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在直三棱柱中,E上,且分别为的中点.
(1)求证:平面
(2)求异面直线所成的角;
(3)求点到平面的距离.
(1)同解析(2)(3)
(1)由条件得
 
                    (4分)
(2)取的中点 ,连接.则
或其补角为所成角


,
                                   (8分)
(3) 设到面的距离为,过,则.
, .
                                                      (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,是半径为的半圆,为直径,点的中点,点和点为线段的三等分点,平面外一点满足平面=

(1)证明:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1 D1. 过EH的平面与棱BB1,CC1相交,交点分别为F,G。

(I)           证明:AD∥平面EFGH;
(II)        设AB=2AA1 ="2" a .在长方体ABCD-A1B1C1D1内随机选取一点。记该点取自几何体A1ABFE-D1DCGH内的概率为p,当点E,F分别在棱A1B1上运动且满足EF=a时,求p的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知矩形ABCD中,,现沿对角线折成二面角,使(如图).
(I)求证:
(II)求二面角平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。
(1)求直线AC与PB所成角的余弦值;
(2)求面AMC与面PMC所成锐二面角的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在长方体中,点在棱的延长线上,且下标

(1)求证:∥平面
(2)求证:平面平面
(3)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图所示,在等腰梯形中, 边上一点,


沿折起,使平面⊥平面
(1)求证:⊥平面
(2)若是侧棱中点,求截面把几何体分成的两部分的体积之比。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面=3,那么直线与平面所成角的正弦值为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角的大小为为空间中任意一点,则过点且与平面和平面所成的角都是的直线的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案