精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图4,是半径为的半圆,为直径,点的中点,点和点为线段的三等分点,平面外一点满足平面=

(1)证明:
(2)求点到平面的距离.
(1)证明见解析
(2)
本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力。
(1)证明:∵点E为的中点,且为直径

,且

∵FC∩AC=C
∴BE⊥平面FBD
∵FD∈平面FBD
∴EB⊥FD
(2)解:∵,且

又∵







∴点到平面的距离
点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题必考一题,主要是考查,直线与平面、平面与平面的垂直与平行。解答题是常常是两证一求,既有证明又有计算,证明主以证明直线与平面的垂直与平行为主,计算主要以体积、面积及求体积与面积的距离(点到线、点到面的),这种考查形式将近几年内不会有大的改变。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,P是平面ADC外的一点,, ,,.
(1)求证:是直线与平面所成的角
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在直三棱柱中,E上,且分别为的中点.
(1)求证:平面
(2)求异面直线所成的角;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面是正三角形,

(Ⅰ)求异面直线所成角的余弦值;
(Ⅱ)求证:平面平面
(Ⅲ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)在四棱锥P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD

PA=2AB
(1)求证:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面
   成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是梯形BCAD,∠DAB=90°,ABBB1=4,BC=3,AD=5,AE=3,FG分别为CDC1D1的中点.

(1)求证:EF⊥平面BB1G
(2)求二面角EBB1G的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知下列命题(表示直线,表示平面):
① 若;② 若
③ 若;④ 若
其中不正确的命题的序号是.(将所有不正确的命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,的中点,上的一点,

(Ⅰ)证明:为异面直线的公垂线;
(Ⅱ)设异面直线的夹角为45°,求二面角的大小.

查看答案和解析>>

同步练习册答案