精英家教网 > 高中数学 > 题目详情
(本题满分14分)已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面
   成角的正切值.

、解:(Ⅰ)做点,连结
因为的中点,

    ………7分]
(Ⅱ)作
平面平面


所以直线与平面所成角的正切值为 …………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E为直二面角。
(1)求证:CD⊥DE;  (2)求AE与面DEC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,是半径为的半圆,为直径,点的中点,点和点为线段的三等分点,平面外一点满足平面=

(1)证明:
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABOC中, , 且

(Ⅰ)设为的中点,证明:在上存在一点,使,并计算的值;
(Ⅱ)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在长方体中,点在棱的延长线上,且下标

(1)求证:∥平面
(2)求证:平面平面
(3)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

理)如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,正确命题的个数为_______.

(1)是正三棱锥 ;
(2)直线∥平面
(3)直线所成的角是
(4)二面角 .   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用一个平面截正方体一角,所得截面一定是(   )
A.锐角三角形B.钝角三角形C.直角三角形D.都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面=3,那么直线与平面所成角的正弦值为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正三棱锥A-BCD中,在棱上,在棱上.并且(0<l<+∞),设a为异面直线所成的角,b 为异面直线EFBD所成的角,则ab的值是
A.B.C.D.与的值有关

查看答案和解析>>

同步练习册答案