分析 构造函数f(θ)=cos2θ+2msinθ-2m-2,利用同角三角形函数关系,可将函数的解析式化为f(θ)=-(sinθ-m)2+m2-2m-1的形式,分0≤m<1,m≥1,m<0三种情况,讨论函数的最大值,最后汇总讨论结果,即可得到答案.
解答 解:设f(θ)=cos2θ+2msinθ-2m-2,
要使f(θ)<0对任意的θ总成立,当且仅当函数y=f(θ)的最大值小于零.
f(θ)=cos2θ+2msinθ-2m-2=1-sin2θ+2msinθ-2m-2=-(sinθ-m)2+m2-2m-1
∴当0≤m<1时,0<θ<$\frac{π}{2}$,函数的最大值为:m2-2m-1<0,解得0≤m<1;
当m≥1时,函数的最大值小于f($\frac{π}{2}$)=-2<0,
∴m≥1时均成立;
当m<0时,函数的最大值小于f(0)=-2m-1<0,m>-$\frac{1}{2}$,解得-$\frac{1}{2}<m<0$.
综上得m的取值范围是:($-\frac{1}{2}$,+∞).
点评 本题考查的知识点是三角函数的最值,其中构造函数f(θ)=cos2θ+2msinθ-2m-2,将问题转化为函数恒成立问题是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{22}{3}$ | C. | $\frac{11}{3}$ | D. | $\frac{3}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 写下对定理或公式的验证方法 | |
| B. | 把解题方法当中涉及到的想法和思路都记下来 | |
| C. | 用自己的语言来表述,不能照抄书上的 | |
| D. | 把所有的习题都记在这本“宝库笔记”上 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y-1)2=1 | B. | (x-$\frac{3}{5}$)2+(y-$\frac{3}{5}$)2=2 | C. | (x+1)2+(y+1)2=1 | D. | (x+$\frac{3}{5}$)2+(y+$\frac{3}{5}$)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,2017x-2>0 | B. | ?x0∈R,tanx0=22 | ||
| C. | ?x0∈R,lgx0<0 | D. | ?x∈R,(x-100)2016>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com