精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,则不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞).

分析 根据题意,有g(x)+h(x)=2x①,结合函数奇偶性的性质可得f(-x)=-g(x)+h(x)=2-x②,联立①②解可得h(x)与g(x)的解析式,进而可以将g(x)>h(0)转化为$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,变形可得2x-2-x>2,解可得x的取值范围,即可得答案.

解答 解:根据题意,f(x)=2x且f(x)=g(x)+h(x),即g(x)+h(x)=2x,①
则有f(-x)=g(-x)+h(-x)=2-x
又由g(x)为奇函数,h(x)为偶函数,则f(-x)=-g(x)+h(x)=2-x,②
联立①②,解可得h(x)=$\frac{1}{2}$(2x+2-x),g(x)=$\frac{1}{2}$(2x-2-x),
不等式g(x)>h(0)即$\frac{1}{2}$(2x-2-x)>$\frac{1}{2}$(20+2-0)=1,
即2x-2-x>2,
解可得2x>1+$\sqrt{2}$,
则有x>log2(1+$\sqrt{2}$),
即不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞);
故答案为:(1+$\sqrt{2}$,+∞).

点评 本题考查函数奇偶性的应用,关键求出函数g(x)与h(x)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知R上的可导函数f(x)的图象如图所示,则不等式(x-2)f'(x)>0的解集为(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,1)∪(2,+∞)D.(-1,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':$\frac{x^2}{6}+\frac{y^2}{5}$=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.
(1)求抛物线C的方程以及|AF|的值;
(2)记抛物线C的准线与x轴交于点B,若$\overrightarrow{MF}=λ\overrightarrow{FN}$,|BM|2+|BN|2=40,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.现将6人A,B,C,D,E,F随机排成一排,则事件“A与B相邻,且A与C不相邻”的概率为$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设变量x、y满足约束条件:$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,则z=x-3y的最小值为(  )
A.4B.8C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈R,使sinx≥1,则¬p为(  )
A.?x∈R,使sinx≠1B.?x∈R,使sinx<1C.?x∈R,使sinx<1D.?x∉R,使sinx≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F2的直线l与双曲线的两支分别交于点A、B,若△ABF1为等边三角形,则双曲线的离心率为(  )
A.4B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在以A,B,C,D,E,F为顶点的三棱柱中,面ABEF为正方形,点G,H,M分别是棱AB,AF,CD的中点,∠AFD=90°.
(1)求证:AF⊥平面EFDC;
(2)求证:平面DGH∥平面BFM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知0<θ<$\frac{π}{2}$,若cos2θ+2msinθ-2m-2<0对任意实数θ恒成立,则实数m应满足的条件是($-\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案