精英家教网 > 高中数学 > 题目详情
2.如图,在以A,B,C,D,E,F为顶点的三棱柱中,面ABEF为正方形,点G,H,M分别是棱AB,AF,CD的中点,∠AFD=90°.
(1)求证:AF⊥平面EFDC;
(2)求证:平面DGH∥平面BFM.

分析 (1)只需证明AF⊥DF,AF⊥FE,即可得AF⊥平面EFDC.
(2)只需证明HG∥BF,DG∥BM,即可得平面DGH∥平面BFM

解答 解:(1)∵四边形ABEF为正方形,∠AFD=90°,∴AF⊥DF,AF⊥FE,又DF∩FE=F
∴AF⊥平面EFDC.
(2)∵点G,H,M分别是棱AB,AF,CD的中点,
∴HG∥BF,DG∥BM
∵DG,HG?面DHG,EF,MB?面BFM,
且DH∩HG=H,BF∩BM=B
∴平面DGH∥平面BFM

点评 本题考查了线面垂直的判定,面面平行的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一条河的两岸平行,河水从西向东流去,一艘船从河的南岸某处出发驶向北岸.已知船的速度|v1|=20km/h,水流速度|v2|=10km/h,要使该船行驶的航程最短,则船速v1的方向与河道南岸上游的夹角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,则不等式g(x)>h(0)的解集是(1+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y=mx2,直线l:2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,若Q在以AB为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi-4,则在复平面内,复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f'(x)=3,则$\underset{lim}{m→0}$$\frac{f({x}_{0}-m)-f({x}_{0})}{3m}$等于(  )
A.3B.$\frac{1}{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.计算定积分${∫}_{1}^{3}$(2x-$\frac{1}{x^2}$)dx的值是(  )
A.0B.$\frac{22}{3}$C.$\frac{11}{3}$D.$\frac{3}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$
(1)若cosC=$\frac{\sqrt{5}}{5}$求A的值;
(2)若$A=\frac{π}{3},c=4$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,那么下列命题中正确的序号为③④.
①若a⊥c,b⊥c,则a∥b;   ②若α⊥γ,β⊥γ,则α∥β;
③若a⊥α,b⊥α,则a∥b;   ④若a⊥α,α⊥β,则α∥β.

查看答案和解析>>

同步练习册答案