精英家教网 > 高中数学 > 题目详情
7.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi-4,则在复平面内,复数z所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、复数相等、几何意义即可得出.

解答 解:实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,
∴a-b+(a+b)i=4i,可得a-b=0,a+b=4,
解得a=b=2.
若z=a+bi-4,=-2+2i,则在复平面内,复数z所对应的点(-2,2)位于第二象限.
故选:B.

点评 本题考查了复数的运算法则、复数相等、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于(  )
A.48B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设变量x、y满足约束条件:$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,则z=x-3y的最小值为(  )
A.4B.8C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F2的直线l与双曲线的两支分别交于点A、B,若△ABF1为等边三角形,则双曲线的离心率为(  )
A.4B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i是虚数单位,则复数$\frac{i}{1+i}$的虚部是(  )
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在以A,B,C,D,E,F为顶点的三棱柱中,面ABEF为正方形,点G,H,M分别是棱AB,AF,CD的中点,∠AFD=90°.
(1)求证:AF⊥平面EFDC;
(2)求证:平面DGH∥平面BFM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=aln(x+1)-$\frac{1}{2}$x2
(1)若函数f(x)在定义域内单调递减,求a的范围.
(2)若a=2,且f(x1)=f(x2),求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(x-y)(x+2y+z)6的展开式中,xy3z3项的系数为-80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线3x-4y-12=0在x轴、y轴上的截距之和为1.

查看答案和解析>>

同步练习册答案