【题目】如图所示,四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD
,四边形ABCD为等腰梯形,BC∥AD,BC=CD
AD=1,E为PA的中点.
![]()
(1)求证:EB∥平面PCD;
(2)求平面PAC与平面PCD所成角的余弦值.
【答案】(1)证明见解析 (2)
.
【解析】
(1)取AD中点F,连结EF、BF,推导出BF∥CD,EF∥PD,从而平面BEF∥平面PCD,由此能证明EB∥平面PCD.
(2)连结PF,则PF⊥平面ABCD,四边形BCDF是边长为1的菱形,△ABF是边长为1的等边三角形,以F为原点,在平面ABCD中过F作AD的垂线为x轴,FD为y轴,FP为z轴,建立空间直角坐标系,利用向量法能求出平面PAC与平面PCD所成角的余弦值.
(1)证明:取AD中点F,连结EF、BF,
∵BC∥AD,BC=CD
AD=1,E为PA的中点,
∴BF∥CD,EF∥PD,
∵BF∩EF=F,CD∩PD=D,
∴平面BEF∥平面PCD,
∵EB平面BEF,∴EB∥平面PCD.
(2)解:连结PF,∵四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD
,
四边形ABCD为等腰梯形,BC∥AD,BC=CD
AD=1,E为PA的中点.
∴PF⊥平面ABCD,四边形BCDF是边长为1的菱形,△ABF是边长为1的等边三角形,
以F为原点,在平面ABCD中过F作AD的垂线为x轴,FD为y轴,FP为z轴,建立空间直角坐标系,
则P(0,0,1),A(0,﹣1,0),C(
,
,0),D(0,1,0),
(0,﹣1,﹣1),
(
,
,﹣1),
(0,1,﹣1),
设平面PAC的法向量
(x,y,z),
则
,取y=1,得
(
,1,﹣1),
设平面PCD的法向量
(x,y,z),
则
,取y=1,得
(
,1,1),
设平面PAC与平面PCD所成角为θ,
则cosθ
.
∴平面PAC与平面PCD所成角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为2的正三角形,
,
为
的中点,
为
的中点.
![]()
(1)证明:
平面
.
(2)在线段
上是否存在一点
,使直线
与平面
所成角的正弦值为
?若存在,求出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知(sinB+sinC)(b﹣c)=(sinA+sinC)a.
(1)求B;
(2)已知b=4,△ABC的面积为
,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的方程为
,离心率
,顶点到渐近线的距离为![]()
(1)求双曲线
的方程;
(2)设
是双曲线
上
点,
,
两点在双曲线
的两条渐近线上,且分别位于第一、二象限,若
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,直线
:
.
(Ⅰ)设
是
图象上一点,
为原点,直线
的斜率
,若
在
上存在极值,求
的取值范围;
(Ⅱ)是否存在实数
,使得直线
是曲线
的切线?若存在,求出
的值;若不存在,说明理由;
(Ⅲ)试确定曲线
与直线
的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
为自然对数的底数)
(1)若
,求函数
的极值;
(2)若
是函数
的一个极值点,试求出
关于
的关系式(用
表示
),并确定
的单调区间;
(3)在(2)的条件下,设
,函数
.若存在
使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-ABCD中,平面
垂直于对角线AC,且平面
截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则( )
![]()
A. S为定值,l不为定值 B. S不为定值,l为定值
C. S与l均为定值 D. S与l均不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线l与圆
相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com