精英家教网 > 高中数学 > 题目详情
已知椭圆C:的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.
【答案】分析:(Ⅰ)由椭圆的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率,可得a,c的值,由此可得椭圆C的方程;
(Ⅱ)将直线l:y=k(x-1)代入椭圆C的方程,消去y并整理一元二次方程,设直线AM的方程,求得与直线x=4的交点坐标P,同理可求得直线BN与直线x=4的交点坐标Q,证明P,Q两点重合,即证明P,Q两点的纵坐标相等.
解答:(Ⅰ)解:由题意,a=2,,∴c=1,∴b2=a2-c2=3
∴椭圆C的方程为:
(Ⅱ)证明:将直线l:y=k(x-1)代入椭圆C的方程,消去y并整理得(3+4k2)x2-8k2x+4(k2-3)=0.
设直线l与椭圆C交点M(x1,y1),N(x2,y2),则x1+x2=,x1x2=
直线AM的方程为:y=),它与直线x=4的交点坐标为P(4,
同理可求得直线BN与直线x=4的交点坐标为Q(4,).
下面证明P,Q两点重合,即证明P,Q两点的纵坐标相等.
∵y1=k(x1-1),y2=k(x2-1),
-===0
∴P,Q两点的纵坐标相等.
综上可知,直线AM与直线BN的交点住直线x=5上.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,椭圆方程的求法,考查运算求解能力,推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2,离心率为
3
2
,点A是椭圆上任一点,△AF1F2的周长为4+2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记
MQ
QN
,若在线段MN上取一点R,使得
MR
=-λ
RN
,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省嘉兴市高考数学一模试卷(理科)(解析版) 题型:解答题

已知椭圆C:的左、右焦点分别为F1,F2,O为原点.
(I)如图①,点M为椭圆C上的一点,N是MF1的中点,且NF2丄MF1,求点M到y轴的距离;
(II)如图②,直线l::y=k+m与椭圆C上相交于P,G两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三下学期第二次联考文数学试卷(解析版) 题型:解答题

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.

(Ⅰ)求椭圆C的方程和离心率e;

(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东临沂高三5月高考模拟文科数学试卷(解析版) 题型:解答题

如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省高三上学期期末考试数学文卷 题型:解答题

 

(本小题满分12分)已知椭圆C:的左、右顶点的坐标分别为,,离心率

(Ⅰ)求椭圆C的方程:

(Ⅱ)设椭圆的两焦点分别为,,若直线与椭圆交于两点,证明直线与直线的交点在直线上。

 

查看答案和解析>>

同步练习册答案