精英家教网 > 高中数学 > 题目详情
A={x|x2≥4},B={x|2x=
1
4
}
,则A∩B=(  )
A、{2}
B、(-∞,-2]
C、[2,+∞)
D、{-2}
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,求出B中方程的解确定出B,找出两集合的交集即可.
解答: 解:由A中的不等式x2≥4,得到x≥2或x≤-2,
即A=(-∞,-2]∪[2,+∞),
由B中的等式变形得:2x=2-2,得到x=-2,
即B={-2},
则A∩B={2}.
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
m
=1
的一个焦点坐标是(5,0),则双曲线的渐近线方程是(  )
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
2
2
3
x
D、y=±
3
2
4
x

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边分别为a,b,c,a=80,b=100,A=30°,则此三角形(  )
A、一定是锐角三角形
B、一定是直角三角形
C、一定是钝角三角形
D、可能是钝角三角形,也可能是锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
4
)
,β∈(0,π),且tan(α-β)=
1
2
tanβ=-
1
7
,则2α-β的值是(  )
A、
π
4
B、
4
C、-
π
4
D、-
4

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,且a3+a8=13,S7=35,则a8=(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(2,5)与圆x2+y2=24的位置关系是(  )
A、在圆外B、在圆内
C、在圆上D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

若cosα<0,tanα>0则α是(  )
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:

设C1 是以F为焦点的抛物线y2=2px(p>0),C2是以直线2x-
3
y=0与2x+
3
y=0为渐近线,以(0,
7
)为一个焦点的双曲线.
(Ⅰ) 求双曲线C2的标准方程;
(Ⅱ) 若C1与C2在第一象限内有两个公共点A和B,求p的取值范围,并求
FA
FB
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,准线为l,M∈C,以M为圆心的圆M与l,相切于点Q,Q的纵坐标为
3
p
,E(5,0)是圆M与x轴除F外的另一个交点
(Ⅰ)求抛物线C与圆M的方程;
(Ⅱ)已知直线n:y=k(x-1)(k>0),n与C交于A,B两点,n与l交于点D,且|FA|=|FD|,求△ABQ的面积.

查看答案和解析>>

同步练习册答案