精英家教网 > 高中数学 > 题目详情
如图△ABC的外角平分线AD交外接圆于D,,则  
4

试题分析:根据题意,由于△ABC的外角平分线AD交外接圆于D,,则根据三角形BD弧和CD弧长相等来得到对应的圆周角相等,进而可知4,故答案为4.
点评:解决的关键是利用圆内的同弧所对的圆周角相等来得到求解。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图所示,是⊙的两条切线,是圆上一点,已知,则=       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在中,,高,在内作射线于点,则的概率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形是圆内接四边形,延长与的延长线交于点,且.

(1)求证:
(2)当时,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线,过A作直线的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为         ;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,BA是圆O的直径,延长BA至E,使得AE=AO,过E点作圆O的割线交圆O于D、E,使AD=DC,

求证:;
若ED=2,求圆O的内接四边形ABCD的周长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

[选修4 - 1:几何证明选讲](本小题满分10分)
如图,在梯形中,∥BC,点分别在边上,设相交于点,若四点共圆,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲)如图,在半径为的⊙中,的中点,的延长线交⊙于点,则线段的长为        

查看答案和解析>>

同步练习册答案