精英家教网 > 高中数学 > 题目详情
15.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,若x+2y≥a恒成立,则实数a的取值范围为(  )
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

分析 要使x+2y≥a恒成立,需使x+2y得最小值大于等于a,设z=x+2y,可得y=-$\frac{1}{2}$x+z,即z为平行直线的斜率,作出足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,对应的可行域,平移直线可得最小值,可得答案.

解答 解:要使x+2y≥a恒成立,需使x+2y得最小值大于等于a,
设z=x+2y,可得y=-$\frac{1}{2}$x+z,即z为平行直线的斜率,
作出足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$对应的可行域,如图:
平移直线可得当直线经过点A(1,-1)时,z取最小值-1,
故可得实数a的取值范围为a≤-1,
故选:A.

点评 本题考查简单的线性规划,准确作图时解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}\right.$,若z=2x+y的最大值为$\frac{11}{2}$,则a=(  )
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,则m的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左,右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}Q}$.
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若F1,F2是椭圆C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的两个焦点,椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,$\sqrt{5}$)的直线l与椭圆C交于两点A、B,线段AB的中垂线l1交x轴于点N,R是线段AN的中点,求直线l1与直线BR的交点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某学校有老师100人,男学生600人,女学生500人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女学生一共抽取了40人,则n的值是(  )
A.96B.192C.95D.190

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1处的切线方程;
(2)求y=f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为x+y-1=0或3x+2y=0.

查看答案和解析>>

同步练习册答案