分析 (1)运用当点P是椭圆的短轴的端点时,∠F1PF2取得最大值,此时cos∠F1PF2可取得最小,计算即可得证;
(2)求得椭圆方程,由题意先设直线的方程为y=k(x+2)(k≠0),把直线方程与椭圆方程进行联立,利用韦达定理整体代换,借助于$\overrightarrow{NA}$=λ$\overrightarrow{NB}$,得到k,λ的关系式,用λ表示k,由λ的范围再求出k的范围.
解答 解:(1)证明:椭圆C:x2+2y2=2λ(λ>0),即为
$\frac{{x}^{2}}{2λ}$+$\frac{{y}^{2}}{λ}$=1,可得a=$\sqrt{2λ}$,b=$\sqrt{λ}$,c=$\sqrt{λ}$,
则F1(-$\sqrt{λ}$,0),F2($\sqrt{λ}$,0),
当P为短轴的一个端点时,|PF1|=|PF2|=a=$\sqrt{2λ}$,|F1F2|=2c=2$\sqrt{λ}$,
即有|PF1|2+|PF2|2=|F1F2|2,∠F1PF2=90°,
由椭圆的性质可得,当P为短轴的端点时,∠F1PF2取得最大值,
即0°≤∠F1PF2≤90°,
则cosθ≥0;
(2)由$\overrightarrow{NA}$=λ$\overrightarrow{NB}$,可得A,B,N三点共线,
而N(-2,0),设直线的方程为y=k(x+2),(k≠0),
由F1(-1,0),可得c=1,即λ=1,
可得椭圆的方程为x2+2y2=2,
由$\left\{\begin{array}{l}{y=k(x+2)}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,消去x得:$\frac{1+2{k}^{2}}{{k}^{2}}$y2-$\frac{4}{k}$y+2=0,
由△=($\frac{4}{k}$)2-8•$\frac{1+2{k}^{2}}{{k}^{2}}$>0,解得0<k<$\frac{\sqrt{2}}{2}$或-$\frac{\sqrt{2}}{2}$<k<0.
设A(x1,y1),B(x2,y2),
由韦达定理得y1+y2=$\frac{4k}{1+2{k}^{2}}$,y1y2=$\frac{2{k}^{2}}{1+2{k}^{2}}$①,
又由$\overrightarrow{NA}$=λ$\overrightarrow{NB}$得:(x1+2,y1)=λ(x2+2,y2),∴y1=λy2②.
将②式代入①式得:$\left\{\begin{array}{l}{(1+λ){y}_{2}=\frac{4k}{1+2{k}^{2}}}\\{λ{{y}_{2}}^{2}=\frac{2{k}^{2}}{1+2{k}^{2}}}\end{array}\right.$,
消去y2得:$\frac{(1+λ)^{2}}{λ}$=$\frac{8}{1+2{k}^{2}}$.
设ϕ(λ)=$\frac{(1+λ)^{2}}{λ}$=λ+$\frac{1}{λ}$+2,当λ∈[$\frac{1}{5}$,$\frac{1}{3}$]时,ϕ(λ)是减函数,
∴$\frac{16}{3}$≤ϕ(λ)≤$\frac{36}{5}$,∴$\frac{16}{3}$≤$\frac{8}{1+2{k}^{2}}$≤$\frac{36}{5}$,
解得 $\frac{1}{18}$≤k2≤$\frac{1}{4}$,又由0<k<$\frac{\sqrt{2}}{2}$或-$\frac{\sqrt{2}}{2}$<k<0.
得$\frac{\sqrt{2}}{6}$≤k≤$\frac{1}{2}$或-$\frac{1}{2}$≤k≤-$\frac{\sqrt{2}}{6}$.
∴直线AB的斜率的取值范围是[$\frac{\sqrt{2}}{6}$,$\frac{1}{2}$]∪[-$\frac{1}{2}$,-$\frac{\sqrt{2}}{6}$].
点评 此题考查了椭圆的方程及椭圆的基本性质,直线方程与椭圆方程进行联立,设而不求及整体代换的思想,还考查了利用均值不等式求值域.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的值变化很小 | B. | 函数f(x)的值变化很大 | ||
| C. | 函数f(x)的值不变化 | D. | 当n很大时,函数f(x)的值变化很小 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,5] | B. | (-∞,-1]∪[5,+∞) | C. | [-1,+∞) | D. | (-∞,5] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com