精英家教网 > 高中数学 > 题目详情
15.已知a,b是两条异面直线,a?α,b?β且a∥β,b∥α,求证:α∥β

分析 先过直线b做平面γ根据线面平行的性质定理得到b∥c,进而得到c∥β;再结合a∥β即可证明α∥β.

解答 证明:如图所示,过直线b做平面γ,
面γ与面α相交于直线c,
则:∵α∩γ=c,β∩γ=b,b∥α,
∴b∥c
又∵b?面β,c?面β
∴c∥β
又∵a∥β且a∩c=P
∴α∥β

点评 本题主要考查面面平行的判定.一般在证明两个平面平行时,在一个平面内找到两条条相交的直线和另一个平面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.判断下列函数的奇偶性:
(1)f(x)=2x4+3x2
(2)f(x)=x3-2x;
(3)f(x)=$\frac{{x}^{2}+1}{x}$;
(4)f(x)=x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知P是△ABC所在平面内一点,4$\overrightarrow{PB}$+5$\overrightarrow{PC}$+3$\overrightarrow{PA}$=$\overrightarrow{0}$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{5}{12}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某高校准备从几名优秀学生挑选选手参加“天才直到”节目的竞赛,他们对人文科学知识和自然科学知识至少擅长一项,已知擅长人文科学的共有5人,擅长自然科学知识的共有2人,现在从中随机选出2人推荐参加比赛培训,设ξ为选出的人中既擅长人文科学也擅长自然科学的人数,已知P(ξ>0)=$\frac{7}{10}$.
(1)求优秀学生的人数;
(2)写出ξ的概率分布列并计算ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列曲线的极坐标方程.
(1)经过点A(3,$\frac{π}{3}$),平行于极轴的直线;
(2)经过点B(-2,$\frac{π}{4}$),垂直于极轴的直线;
(3)圆心在点A(5,π),半径等于5的圆;
(4)经过点C(a,0),与极轴相交成α角的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,且AC=AA1
(1)求证:AB⊥A1C;
(2)求异面直线A1C与BB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一枚质地均匀的硬币,抛掷n(n∈N*)次.
(1)当n=3,记正面向上的次数为ξ,求ξ的分布列及期望;
(2)当n=10,求正面不连续出现的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=${log}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$,b=${log}_{\sqrt{2}}\frac{1}{\sqrt{2}}$,c=-2,则a、b、c的大小关系是(  )
A.a>b>cB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在集合A={m|关于x的方程x2+mx+$\frac{3}{4}$m+1=0无实根}中随机的取一元素x,恰使lgx有意义的概率为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案