精英家教网 > 高中数学 > 题目详情
20.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,且AC=AA1
(1)求证:AB⊥A1C;
(2)求异面直线A1C与BB1所成角的大小.

分析 (1)通过直线与平面垂直,证明直线鱼嘴鞋垂直即AB⊥A1C;
(2)异面直线A1C与BB1所成角的大小.求出三角形的三个边长,然后求解异面直线所成角即可.

解答 解:(1)证明:侧棱垂直于底面的三棱柱ABC-A1B1C1中,
可得AB⊥AA1,又∵AB⊥AC,AC∩AA1=A,可得AB⊥平面AA1C1C,
且A1C?平面AA1C1C,
∴AB⊥A1C;
(2)解:因为几何体是棱柱,BB1∥AA1,则直线A1C与AA1所成的角为就是异面直线A1C与BB1所成的角.
直三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC.AC=AA1
三角形CAA1是等腰直角三角形,异面直线所成角为45°.
异面直线A1C与BB1所成角的大小为45°.

点评 本题考查异面直线所成角的求法,直线与平面垂直的判断,考查空间想象能力以及考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.根据下面条件.求出圆的标准方程,并画出图形.
(1)圆心C(-1,2),半径r=2;
(2)圆心C(0,-3),半径r=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直三棱柱ABC-A1B1C1的各顶点都在球O的球面上,且AB=AC=1,BC=$\sqrt{3}$,若球O的体积为$\frac{20}{3}$$\sqrt{5}$π,则这个直三棱柱的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2015年3月22日,长沙某协会在保护湘江,爱我母亲河“活动中共计放生了青鱼、草鱼、鲫鱼数百万尾.
(1)若这些鱼中三种鱼所占比例一样,现从中抽取5尾检查鱼的健康状况,求其中青鱼的尾数x的分布列及其数学期望;
(2)在放生前有人发现数百尾鱼不合格,若从不合格的鱼中任意抽取1尾,得到青鱼的概率是$\frac{3}{8}$,任意依次抽取2尾鱼,没有鲫鱼的概率为$\frac{1}{4}$,求证:任意依次抽取2尾鱼,至少一尾青鱼的概率不大于$\frac{11}{16}$,并指出不合格的鱼中哪种鱼最多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b是两条异面直线,a?α,b?β且a∥β,b∥α,求证:α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在平面直角坐标系xOy中,经过点(0,$\sqrt{2}$)且斜率为k的直线l与曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ是参数)有两个不同的交点P和Q,则k的取值范围为(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\sqrt{(\frac{1}{2})^{3x-1}-1}$.
(1)求它的定义域和单调区间;
(2)若x∈[-$\frac{2}{3}$,-$\frac{1}{3}$]时,求它的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{2\sqrt{5}}{5}$,若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,且sinβ=-$\frac{5}{13}$,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线y2=x上的点到直线x-2y+3=0的距离的最小值是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案