【题目】定义在上的函数满足:①对一切恒有;②对一切恒有;③当时,,且;④若对一切(其中),不等式恒成立.
(1)求的值;
(2)证明:函数是上的递增函数;
(3)求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳组的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | P | |
第三组 | 100 | 0.5 | |
第四组 | a | 0.4 | |
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图,并求n,a,p的值;
(2)求年龄段人数的中位数和众数;(直接写出结果即可)
(3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)
(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;
(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】重庆朝天门批发市场某服装店试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该服装店获得利润为W元,试写出利润与销售单价x之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和,已知,.
(1)求证:数列为等差数列,并求出其通项公式;
(2)设,又对一切恒成立,求实数的取值范围;
(3)已知为正整数且,数列共有项,设,又,求的所有可能取值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定平面上的点集,中任三点均不共线。将中所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案。不同的分组方式得到不同的图案。将图案中所含的以中的点为顶点的三角形的个数记为。
(1)求的最小值;
(2)设是使的一个图案,若将中的线段(指以的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色。证明存在一个染色方案,使染色后不含以的点为顶点的三边颜色相同的三角形。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为.
(Ⅰ)求直线与底面所成的角;
(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com