【题目】已知椭圆
的离心率为
,且椭圆上的一点与两个焦点构成的三角形周长为
.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
相交于
两点.
①若线段
中点的横坐标为
,求
的值;
②在
轴上是否存在点
,使
为定值?若是,求点
的坐标;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】某校准备从高一年级的两个男生
和三个女生
中选择2个人去参加一项比赛.
(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;
(2)若从男生和女生中各选1个人,求这2个人包括
,但不包括
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,……,An是线段An-2An-1的中点,……
(1)写出xn与xn-1,xn-2之间的关系式(n≥3);
(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是( )
A.[4﹣2ln2,+∞)
B.(
,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构通过对某企业今年的生产经营情况的调查,得到每月利润
(单位:万元)与相应月份数
的部分数据如表:
| 1 | 4 | 7 | 12 |
| 229 | 244 | 241 | 196 |
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述
与
的变化关系,并说明理由,
,
,
;
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com