分析 (1)利用函数的单调性的定义证明函数f(x)在R上为增函数.
(2)利用f(0)=0求得a的值,再根据f(x)在[-1,2]是单调递增的,从而求得函数f(x)在[-1,2]上的值域.
解答 解:(1)对于函数f(x)=a-$\frac{1}{{2}^{x}+1}$,任取x1,x2∈R,且x1<x2,
则f(x1)-f(x2)=a-$\frac{1}{{2}^{{x}_{1}}+1}$-a+$\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{1}}{-2}^{{x}_{2}}}{({1+2}^{{x}_{2}})(1{+2}^{{x}_{1}})}$,
因为x1<x2,所以${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,而分母(1+${2}^{{x}_{1}}$)•(1+${2}^{{x}_{2}}$)>0,故f(x1)-f(x2)<0,
所以函数f(x)在R上为增函数.
(2)因函数f(x)在x=0有意义,又函数f(x)为奇函数,则f(0)=a-$\frac{1}{2}$=0,∴a=$\frac{1}{2}$,f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$,
由(1)可知f(x)在[-1,2]是单调递增的,易得$f{(x)_{min}}=f(-1)=-\frac{1}{6}$,$f{(x)_{max}}=f(2)=\frac{3}{10}$,
即f(x)的值域是$[-\frac{1}{6},\frac{3}{10}]$.
点评 本题主要考查函数的单调性的证明方法,利用单调性求函数的最值,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{14}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin(x-\frac{π}{4})$ | B. | $y=cos(x+\frac{π}{4})$ | C. | $y=sin(2x+\frac{π}{4})$ | D. | $y=cos(2x-\frac{π}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\frac{3}{2}$ | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com