精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=a-$\frac{1}{{2}^{x}+1}$.
(1)求证:函数f(x)在R上为增函数;
(2)当函数f(x)为奇函数时,求函数f(x)在[-1,2]上的值域.

分析 (1)利用函数的单调性的定义证明函数f(x)在R上为增函数.
(2)利用f(0)=0求得a的值,再根据f(x)在[-1,2]是单调递增的,从而求得函数f(x)在[-1,2]上的值域.

解答 解:(1)对于函数f(x)=a-$\frac{1}{{2}^{x}+1}$,任取x1,x2∈R,且x1<x2
则f(x1)-f(x2)=a-$\frac{1}{{2}^{{x}_{1}}+1}$-a+$\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{1}}{-2}^{{x}_{2}}}{({1+2}^{{x}_{2}})(1{+2}^{{x}_{1}})}$,
因为x1<x2,所以${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,而分母(1+${2}^{{x}_{1}}$)•(1+${2}^{{x}_{2}}$)>0,故f(x1)-f(x2)<0,
所以函数f(x)在R上为增函数.
(2)因函数f(x)在x=0有意义,又函数f(x)为奇函数,则f(0)=a-$\frac{1}{2}$=0,∴a=$\frac{1}{2}$,f(x)=$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$,
由(1)可知f(x)在[-1,2]是单调递增的,易得$f{(x)_{min}}=f(-1)=-\frac{1}{6}$,$f{(x)_{max}}=f(2)=\frac{3}{10}$,
即f(x)的值域是$[-\frac{1}{6},\frac{3}{10}]$.

点评 本题主要考查函数的单调性的证明方法,利用单调性求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知圆O:x2+y2=r2(r>0)及圆上的点A(0,-r),过点A的直线l交圆于另一点B,交x轴于点C,若OC=BC,则直线l的斜率为±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前n项和为Sn,且a1=-20.在区间(3,5)内任取一个实数作为数列{an}的公差,则Sn的最小值仅为S6的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{6}$C.$\frac{3}{14}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在三角形ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{ac}{{{b^2}-{a^2}-{c^2}}}=\frac{sinAcosA}{{cos({A+C})}}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数$f(x)=sin(2x-\frac{π}{4})$图象上的所有点向左平移$\frac{π}{4}$个单位长度,则所得图象的函数解析式是(  )
A.$y=sin(x-\frac{π}{4})$B.$y=cos(x+\frac{π}{4})$C.$y=sin(2x+\frac{π}{4})$D.$y=cos(2x-\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.通过模拟试验,产生了20组随机数:6830  3013  7055  7430  7740  4422  7884  2604  3346  0952  6807  9706  5774  5725  6576  5929  9768  6071  9138  6754 如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为25%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某省2015年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5),第二组[162.5,167.5),…,第6组[182.5,187.5),图是按上述分组方法得到的频率分布直方图.
(1)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(2)求这50名男生身高在177.5cm以上(177.5cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(以高到低)在全省前130名的人数记为ξ,求ξ的数学期望.
(参考数据:若ξ~N(μ,σ2),P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点A(0,1),点P在双曲线$C:\frac{x^2}{2}-{y^2}=1$上.
(1)当|PA|最小时,求点P的坐标;
(2)过A点的直线l与双曲线C的左、右两支分别交于M、N两点,O为坐标原点,若△OMN的面积为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.P是△ABC内的一点,$\overrightarrow{AP}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,则△ABC的面积与△BCP的面积之比为(  )
A.2B.3C.$\frac{3}{2}$D.6

查看答案和解析>>

同步练习册答案