【题目】已知函数
.
(I)求曲线
在点
处的切线方程.
(Ⅱ)若直线
为曲线
的切线,且经过原点,求直线
的方程及切点坐标.
【答案】(Ⅰ)4x﹣y﹣18=0(Ⅱ)y=13x,切点为(﹣2,﹣26)
【解析】
(Ⅰ)求得函数的导数
3x2+1,求得在点
切线的斜率和切点的坐标,即可求解切线的方程;
(Ⅱ)设切点为(m,n),求得切线的斜率为1+3m2,根据切线过原点,列出方程,求得
的值,进而可求得切线的方程.
(Ⅰ)由题意,函数f(x)=x3+x﹣16的导数为
3x2+1,得
,
即曲线y=f(x)在点(1,f(1))处的切线斜率为4,且切点为(1,﹣14),
所以切线方程为y+14=4(x﹣1),即为4x﹣y﹣18=0;
(Ⅱ)设切点为(m,n),可得切线的斜率为1+3m2,
又切线过原点,可得1+3m2
,解得m=﹣2,
即切点为(﹣2,﹣26),所以切线方程为y+26=13(x+2),即y=13x.![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
是函数
的导函数,则
的图象大致是( )
A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]
C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一款击鼓小游戏规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得50分,没有出现音乐则扣除150分(即获得-150分).设每次击鼓出现音乐的概率为
,且各次击鼓出现音乐相互独立.
(Ⅰ)玩一盘游戏,至少出现一次音乐的概率是多少?
(Ⅱ)设每盘游戏获得的分数为
,求
的分布列;
(Ⅲ)许多玩过这款游戏的人都发现,玩的盘数越多,分数没有增加反而减少了.请运用概率统计的相关知识分析其中的道理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系
,曲线
的参数方程为
(
为参数,
).在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
.
(1)说明
是哪种曲线,并将
的方程化为极坐标方程;
(2)已知
与
的交于
,
两点,且
过极点,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项是正数的数列
的前n项和为
.
(1)若
(nN*,n≥2),且
.
①求数列
的通项公式;
②若
对任意
恒成立,求实数
的取值范围;
(2)数列
是公比为q(q>0, q1)的等比数列,且{an}的前n项积为
.若存在正整数k,对任意nN*,使得
为定值,求首项
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com