精英家教网 > 高中数学 > 题目详情

【题目】有一款击鼓小游戏规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得50分,没有出现音乐则扣除150分(即获得-150分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

(Ⅰ)玩一盘游戏,至少出现一次音乐的概率是多少?

(Ⅱ)设每盘游戏获得的分数为,求的分布列;

(Ⅲ)许多玩过这款游戏的人都发现,玩的盘数越多,分数没有增加反而减少了.请运用概率统计的相关知识分析其中的道理.

【答案】(1)(2)见解析(3)见解析

【解析】分析:(表示事件玩一盘游戏,至少出现一次音乐,则;(的可能取值为,利用组合知识,根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列;结合),利用期望公式可得的数学期可得每盘所得分数的期望为负值,故玩的盘数越多,所得分数反而可能减少.

详解(Ⅰ)设表示事件“玩一盘游戏,至少出现一次音乐”,

.

(Ⅱ)的可能值为-150,10,20,50,则

所以,的分布列为:

-150

10

20

50

(Ⅲ)由(Ⅱ)可知,

即每盘所得分数的期望为负值,故玩的盘数越多,所得分数反而可能减少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的单调减区间为.

1)求的值及极值;

2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在六条棱长分别为233455的所有四面体中,最大的体积是多少?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面,底面是菱形, 的交点, 为棱上一点,

(1)证明:平面⊥平面

(2)若三棱锥的体积为

求证: ∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)求曲线在点处的切线方程.

(Ⅱ)若直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是菱形,∠BCD120°,PA⊥底面ABCDPA4AB2

I)求证:平面PBD⊥平面PAC

(Ⅱ)过AC的平面交PD于点M若平面AMC把四面体PACD分成体积相等的两部分,求二面角AMCP的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙等5人排成一排照相,按下列要求各有多少种不同的排法?求:

1)甲、乙不能相邻;

2)甲、乙相邻且都不站在两端;

3)甲、乙之间仅相隔1人;

4)按高个子站中间,两侧依次变矮(五人个子各不相同)的顺序排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点为左焦点,过点轴的垂线交椭圆两点,且.

(1)求椭圆的方程;

(2)若是椭圆上异于点的两点,且直线的倾斜角互补,则直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若方程在区间(0,+)上有实数解求实数a的取值范围

(3)若存在实数,且,使得,求证:

查看答案和解析>>

同步练习册答案