精英家教网 > 高中数学 > 题目详情
(2012•包头三模)如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点
(I)求证:EF∥平面A′BC;
(II)求三棱锥A′-BCE的体积.
分析:(I)取A′C的中点M,连接MF,MB,利用题设条件推导出四边形EBMF为平行四边形,从而得到EF∥MB,由此能够证明EF∥平面A′BC.
(II)过A′作A′S⊥DE,S为垂直足,由题设条件推导出A′S⊥平面BCDE,再由AB=4,AD=2,得到AS=
2
,由此能求出三棱锥A′-BCE的体积.
解答:解:(I)取A′C的中点M,连接MF,MB,
∵在矩形ABCD中E为AB的中点,F为线段A′D的中点,
∴EB
.
1
2
DC
,FM
.
1
2
DC

∴FM
.
EB,∴四边形EBMF为平行四边形,
∴EF∥MB,
∵EF?平面A′BC,MB?平面A′BC,
∴EF∥平面A′BC.
(II)过A′作A′S⊥DE,S为垂直足,
∵平面A′DE⊥平面BCDE,且平面A′DE∩平面BCDE=DE,
∴A′S⊥平面BCDE,
∵矩形ABCD中,AB=4,AD=2,∴AS=
2

VA-BCE=
1
3
S△BECAS
=
1
3
×
1
2
×2×2×
2
=
2
2
3
点评:本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•包头三模)设x,y满足线性约束条件
x-2y+3≥0
2x-3y+4≤0
y≥0
,若目标函数z=ax+by(其中a>0,b>0)的最大值为3,则
1
a
+
2
b
的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)函数y=sin(ωx+φ)(ω>0且|φ|<
π
2
)
在区间[
π
6
3
]
上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)若曲线y=x2在点(a,a2)(a>0)处的切线与两个坐标轴围成的三角形的面积为2,则a等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点(-
1
2
 , -2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头三模)设函数f(x)=xex,g(x)=ax2+x
(I)若f(x)与g(x)具有完全相同的单调区间,求a的值;
(Ⅱ)若当x≥0时恒有f(x)≥g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案