精英家教网 > 高中数学 > 题目详情

【题目】从某大学一年级女生中,选取身高分别是150cm155cm160cm165cm170cm的学生各一名,其身高和体重数据如表所示:

身高/cm

150

155

160

165

170

体重/kg

43

46

49

51

56

1关于的线性回归方程;

2利用1中的回归方程,计算身高为168cm时,体重的估计值为多少?

参考公式:线性回归方程,其中.

【答案】1 2 53.96kg

【解析】

试题分析:1先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程;2由回归直线方程,计算当x=168cm时,即可求得体重的估计值

试题解析:由已知数据,可得

关于的线性回归方程为

知,当时,kg

因此,当身高为168cm时,体重的估计值53.96kg

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是( )

A. 圆柱的侧面展开图是一个矩形

B. 圆锥过轴的截面是一个等腰三角形

C. 平行于圆台底面的平面截圆台,截面是圆面

D. 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数若函数的图象与轴相邻两个交点间的距离为,且图像的一条对称轴是直线

1)求的值;

2)求函数的单调增区间;

3)画出函数在区间上的图像。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是公比为正整数的等比数列,是等差数列,且.

(1)求数列的通项公式;

(2)数列的前项和为.

试求最小的正整数,使得时,都有成立;

是否存在正整数 使得成立?若存在,请求出所有满足条件的;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是村里一个小湖的一角,其中. 为了给村民营造丰富的休闲环境,村委会决定在直线湖岸上分别建观光长廊,其中是宽长廊,造价是元/米;是窄长廊,造价是元/米;两段长廊的总造价预算为万元(恰好都用完);同时,在线段上靠近点的三等分点处建一个表演舞台,并建水上通道(表演舞台的大小忽略不计),水上通道的造价是元/米.

1)若规划宽长廊与窄长廊的长度相等,则水上通道的总造价需多少万元?

2)如何设计才能使得水上通道的总造价最低?最低总造价是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,左右顶点分别为,经过点的直线与椭圆交于两点.

1求椭圆方程;

2的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修41:几何证明选讲

如图,四边形内接于,过点的切线的延长线于,已知.

证明:

1

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1若某位顾客消费128元,求返券金额不低于30元的概率;

2若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为.求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=2x3+1与y=3x2﹣b的图象在一个公共点P(x0 , y0)(x0>0)处的切线相同,则实数b=

查看答案和解析>>

同步练习册答案