| A. | (e,+∞) | B. | (0,e) | C. | $(0,\frac{1}{e})∪(1,e)$ | D. | $(\frac{1}{e},e)$ |
分析 求出函数的导数,求出单调增区间,再判断函数的奇偶性,则不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$,转化为f(lnx)<f(1)即为f|lnx|)<f(1),则|lnx|<1,运用对数函数的单调性,即可得到解集.
解答 解:函数f(x)=xsinx+cosx+x2的导数为:
f′(x)=sinx+xcosx-sinx+2x=x(2+cosx),
则x>0时,f′(x)>0,f(x)递增,
且f(-x)=xsinx+cos(-x)+(-x)2=f(x),
则为偶函数,即有f(x)=f(|x|),
则不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$,即为f(lnx)<f(1)
即为f|lnx|)<f(1),
则|lnx|<1,即-1<lnx<1,解得,$\frac{1}{e}$<x<e.
故选:D.
点评 本题考查函数的单调性和奇偶性的运用:解不等式,考查导数的运用:判断单调性,考查对数不等式的解法,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{3\sqrt{3}}{4}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{27\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x±3y=0 | B. | 3x±4y=0 | C. | 16x±9y=0 | D. | 9x±16y=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com