精英家教网 > 高中数学 > 题目详情
4.关于x的不等式log2|1-x|>1的解集为{x|x<-1或x>3}.

分析 由题意可得,|1-x|>2即x-1<-2或x-1>2,解不等式可得.

解答 解:由题意可得,|1-x|>2
∴x-1<-2或x-1>2
解可得,x<-1或x>3,
故答案为:{x|x<-1或x>3}.

点评 本题考查对数函数的单调性、对数函数的定义域,及绝对值不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两个焦点,若点P在双曲线上,且∠F1PF2=90°,|PF1|•|PF2|=2,则b=(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合P={x∈R|x>0},Q={x∈Z|(x+1)(x-4)<0},则P∩Q=(  )
A.(0,4)B.(4,+∞)C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1,F2,A(2,0)是椭圆的右顶点,过F2且垂直与x轴的直线交椭圆于P,Q两点,且|PQ|=3
(1)求椭圆的方程
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,求证:直线l过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则a7=(  )
A.$\frac{1}{64}$B.$\frac{1}{32}$C.$\frac{1}{16}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平面内定点财(1,0),定直线l:x=4,P为平面内动点,作PQ丄l,垂足为Q,且$|\overrightarrow{PQ}|=2|\overrightarrow{PM}|$.
(I)求动点P的轨迹方程;
(II )过点M与坐标轴不垂直的直线,交动点P的轨迹于点A、B,线段AB的垂直平分 线交x轴于点H,试判断$\frac{|HM|}{|AB|}$-是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,底面为平行四边形的四棱柱ABCD-A'B'C'D'中,DD'⊥平面ABCD,∠DAB=$\frac{π}{3}$,AB=2AD,DD'=3AD,E、F分别是线段AB、D'E的中点.
(Ⅰ)求证:CE⊥DF;
(Ⅱ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示程序框图,执行该程序后输出的结果是$\frac{29}{10}$,则判断框内应填入的条件是(  )
A.i>47B.i≥4?C.i<4?D.i≤4?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(1og2x)=x-1,那么f(lg2)=2lg2-1.

查看答案和解析>>

同步练习册答案