精英家教网 > 高中数学 > 题目详情
19.等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则a7=(  )
A.$\frac{1}{64}$B.$\frac{1}{32}$C.$\frac{1}{16}$D.$\frac{1}{8}$

分析 由等比数列的性质可得:${a}_{7}=\frac{{a}_{5}^{2}}{{a}_{2}}$,代入即可得出.

解答 解:由等比数列的性质可得:${a}_{7}=\frac{{a}_{5}^{2}}{{a}_{2}}$=$\frac{(\frac{1}{4})^{2}}{2}$=$\frac{1}{32}$.
故选:B.

点评 本题考查了等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={-1,1,4},B={y|y=log2|x|+1,x∈A},则A∩B=(  )
A.{-1,1,3,4}B.{-1,1,3}C.{1,3}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正方体ABCD-A1B1C1D1的棱长为2,长度为2的线段MN的一个端点M在棱DD1上运动,另一个端点N在正方形ABCD内运动,则MN中点的轨迹与正方体ABCD-A1B1C1D1的表面所围成的较小的几何体的体积等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$M(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若A1,A2是椭圆E的左右顶点,过点A2作直线l与x轴垂直,点P是椭圆E上的任意一点(不同于椭圆E的四个顶点),联结PA;交直线l与点B,点Q为线段A1B的中点,求证:直线PQ与椭圆E只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知O为坐标原点,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,A,B分别为左、右顶点,过点F做x轴的垂线交双曲线于点P,Q,连接PB交y轴于点E,连结AE交QF于点M,若M是线段QF的中点,则双曲线C的离心率为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x的不等式log2|1-x|>1的解集为{x|x<-1或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(理)设θ为直线$x-\sqrt{3}y-1=0$的倾斜角,则$sin(θ+\frac{π}{4})$=(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+1}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序框图,输出的n等于(  )
A.30零B.29C.28D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x3+(3-3a)x2-12ax+1(a∈R),若f(x)在区间(2,6)上不单调,则实数a的取值范围是(1,3).

查看答案和解析>>

同步练习册答案