精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x2+ax+b在x=-1处的切线与x轴平行.
(Ⅰ)求a的值和函数f(x)的单调区间.
(Ⅱ)若方程恰有三个不同的解,求b的取值范围.
【答案】分析:(1)根据已知得f′(-1)=0,得到a,利用导数研究函数的单调性的步骤求单调区间;
(2)把给定方程做适当的等价变换,得到g(x)的图象与x轴有3个交点;求出单调区间,求出函数的极值,依题意极大值大于0,极小值小于0,进而解出b的取值范围.
解答:解:(1)由已知得f′(x)=3x2-6x+a,
∵在x=-1处的切线与x轴平行
∴f′(-1)=0,解得a=-9.
这时f′(x)=3x2-6x-9=3(x+1)(x-3)
由f′(x)>0,解得x>3或x<-1;
由f′(x)<0,解-1<x<3.
∴f(x)的单调增区间为(-∞,-1)∪(3,+∞);单调减区间为(-1,3).
(2)令g(x)=f(x)-(x2-15x+3)=x3-x2+6x+b-3
则原题意等价于g(x)图象与x轴有三个交点
∵g′(x)=3x2-9x+6=3(x-1)(x-2)
∴由g′(x)>0,解得x>2或x<1;
由g′(x)<0,解得1<x<2.
∴g(x)在x=1时取得极大值g(1)=b-;g(x)在x=2时取得极小值g(2)=b-1.
依题意得,解得<b<1.
故b的取值范围为(,1)
点评:本题考查导数的几何意义及利用导数研究函数的单调性,应熟练掌握利用可导函数研究函数的单调性的步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案