精英家教网 > 高中数学 > 题目详情
11.已知m∈R,i为虚数单位,若 $\frac{1-2i}{m-i}$为实数,则m=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-2

分析 利用复数代数形式的乘除运算化简,再由虚部等于0求得m的值.

解答 解:∵$\frac{1-2i}{m-i}$=$\frac{(1-2i)(m+i)}{(m-i)(m+i)}=\frac{(m+2)+(1-2m)i}{{m}^{2}+1}$为实数,
∴1-2m=0,即m=$\frac{1}{2}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=cos(x-$\frac{π}{4}$),先把y=f(x)的图象上所有点向左平移$\frac{π}{4}$个单位长度,再把所得图象上所有点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),然后再把图象上所有点的纵坐标扩大为原来的3倍(横坐标不变),从而得到函数y=g(x)的图象,则函数g(x)的解析式为g(x)=3cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,第6项为常数项,则n为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线经过A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角的取值范围是(  )
A.[0,π)B.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)C.[0,$\frac{π}{4}$]D.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知求形如函数y=(f(x))g(x)的导数的方法如下:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导数得到:$\frac{1}{y}$•y′=g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}$•f′(x),于是得到y′=(f(x))g(x)•(g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}•$f′(x)).运用此方法求得函数y=x${\;}^{\frac{1}{x}}$(x>0)的极值情况是(  )
A.极大值点为(e,e${\;}^{\frac{1}{e}}$)B.极小值点为(e,e${\;}^{\frac{1}{e}}$)
C.极大值点为eD.极小值点为e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=4$,且$\overrightarrow a$与$\overrightarrow b$不共线,若$\overrightarrow a+k\overrightarrow b$与$\overrightarrow a-k\overrightarrow b$垂直时,k的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.±$\frac{3}{4}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|y=lg(3-2x)},集合B={y|y=$\sqrt{1-x}$},则A∩B=(  )
A.[0,$\frac{3}{2}$)B.(-∞,1]C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(2x+φ)的图象经过点E($\frac{π}{4}$,$\sqrt{3}$),F($\frac{π}{3}$,1),其中A≠0,φ∈(0,$\frac{π}{2}$).
(Ⅰ)求φ的值,并求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求sin($\frac{7π}{6}$-4θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知常数a≥0,函数f(x)=ln(1+x)+$\frac{a}{2}$x2-x(x≥0).
(1)讨论函数f(x)的单调性;
(2)设n∈N*,求证:ln(n+1)<$\sum_{i=1}^{n}$$\frac{1}{k}$<ln(n+1)+$\frac{2n-1}{2n}$.

查看答案和解析>>

同步练习册答案