精英家教网 > 高中数学 > 题目详情
3.设集合A={x|y=lg(3-2x)},集合B={y|y=$\sqrt{1-x}$},则A∩B=(  )
A.[0,$\frac{3}{2}$)B.(-∞,1]C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出A与B的交集即可.

解答 解:由A中y=lg(3-2x),得到3-2x>0,即x<$\frac{3}{2}$,
∴A=(-∞,$\frac{3}{2}$),
由B中y=$\sqrt{1-x}$≥0,即B=[0,+∞),
∴A∩B=[0,$\frac{3}{2}$).
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=3sin(2x+$\frac{π}{3}$)的图象可以看作是把函数y=3sin2x的图象作下列移动而得到(  )
A.向左平移$\frac{π}{3}$单位B.向右平移$\frac{π}{3}$单位C.向左平移$\frac{π}{6}$单位D.向右平移$\frac{π}{6}$单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式|3x-4|>1+2x的解集为{x|x>5或x<$\frac{3}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m∈R,i为虚数单位,若 $\frac{1-2i}{m-i}$为实数,则m=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow a$|=1,|$\vec b$|=$\sqrt{2}$.
(1)若$\overrightarrow a$,$\vec b$的夹角为135°,求|$\overrightarrow a$+$\vec b$|;
(2)若$\overrightarrow a∥\overrightarrow b$,求$\vec a•\vec b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.图是偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<φ<π)的部分图象,△KML为等腰直角三角形,∠KML=90°,|KL|=1,则$f(\frac{1}{6})$=(  )
A.-$\frac{{\sqrt{3}}}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若全集U=R,集合A={x|x2-x-2>0},则∁UA=(  )
A.(-1,2)B.(-2,1)C.[-1,2]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义两种运算:a⊕b=$\sqrt{{a^2}-{b^2}},a?b=\sqrt{{{({a-b})}^2}}$,则函数f(x)=$\frac{2⊕x}{{({x?2})-2}}$的奇偶性为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从三角形内部任意一点向各边引垂线,其长度分别为d1,d2,d3,且相应各边上的高分别为h1,h2,h3,求证:$\frac{{d}_{1}}{{h}_{1}}$+$\frac{{d}_{2}}{{h}_{2}}$+$\frac{{d}_{3}}{{h}_{3}}$=1.类比以上性质,给出空间四面体的一个猜想,并给出证明.

查看答案和解析>>

同步练习册答案