精英家教网 > 高中数学 > 题目详情
8.图是偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<φ<π)的部分图象,△KML为等腰直角三角形,∠KML=90°,|KL|=1,则$f(\frac{1}{6})$=(  )
A.-$\frac{{\sqrt{3}}}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{4}$

分析 通过函数的图象,利用KL以及∠KML=90°求出求出A,然后函数的周期,确定ω,利用函数是偶函数求出φ,即可求解f($\frac{1}{6}$)的值.

解答 解:因为f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,
所以A=$\frac{1}{2}$,T=2,因为T=$\frac{2π}{ω}$,所以ω=π,
函数是偶函数,0<φ<π,所以φ=$\frac{π}{2}$,
∴函数的解析式为:f(x)=$\frac{1}{2}$sin(πx+$\frac{π}{2}$),
所以f($\frac{1}{6}$)=$\frac{1}{2}$sin($\frac{π}{6}$+$\frac{π}{2}$)=$\frac{\sqrt{3}}{4}$.
故选:D.

点评 本题考查函数的解析式的求法,函数奇偶性的应用,考查学生识图能力、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}中,a1+a3=10,a4+a6=10,求其第4项及前5项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线经过A(2,1),B(1,m2)两点(m∈R),那么直线l的倾斜角的取值范围是(  )
A.[0,π)B.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)C.[0,$\frac{π}{4}$]D.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=4$,且$\overrightarrow a$与$\overrightarrow b$不共线,若$\overrightarrow a+k\overrightarrow b$与$\overrightarrow a-k\overrightarrow b$垂直时,k的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.±$\frac{3}{4}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|y=lg(3-2x)},集合B={y|y=$\sqrt{1-x}$},则A∩B=(  )
A.[0,$\frac{3}{2}$)B.(-∞,1]C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a为如图所示的算法框图中输出的结果,则二项式${(x+\frac{a}{x^2})^9}$的展开式中的常数项为(  )
A.84B.-84C.672D.-672

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(2x+φ)的图象经过点E($\frac{π}{4}$,$\sqrt{3}$),F($\frac{π}{3}$,1),其中A≠0,φ∈(0,$\frac{π}{2}$).
(Ⅰ)求φ的值,并求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求sin($\frac{7π}{6}$-4θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在抛物线y2=4x上有三点A,B,C,△ABC的重心是抛物线的焦点F,则$|{\overrightarrow{FA}}|+|{\overrightarrow{FB}}|+|{\overrightarrow{FC}}|$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第34颗珠子的颜色是(  )
A.白色B.白色的可能性大C.黑色D.黑色的可能性大

查看答案和解析>>

同步练习册答案