| A. | -$\frac{{\sqrt{3}}}{4}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
分析 通过函数的图象,利用KL以及∠KML=90°求出求出A,然后函数的周期,确定ω,利用函数是偶函数求出φ,即可求解f($\frac{1}{6}$)的值.
解答
解:因为f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,
所以A=$\frac{1}{2}$,T=2,因为T=$\frac{2π}{ω}$,所以ω=π,
函数是偶函数,0<φ<π,所以φ=$\frac{π}{2}$,
∴函数的解析式为:f(x)=$\frac{1}{2}$sin(πx+$\frac{π}{2}$),
所以f($\frac{1}{6}$)=$\frac{1}{2}$sin($\frac{π}{6}$+$\frac{π}{2}$)=$\frac{\sqrt{3}}{4}$.
故选:D.
点评 本题考查函数的解析式的求法,函数奇偶性的应用,考查学生识图能力、计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [0,π) | B. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) | C. | [0,$\frac{π}{4}$] | D. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | ±$\frac{3}{4}$ | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{3}{2}$) | B. | (-∞,1] | C. | (-∞,$\frac{3}{2}$] | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 84 | B. | -84 | C. | 672 | D. | -672 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 白色 | B. | 白色的可能性大 | C. | 黑色 | D. | 黑色的可能性大 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com