精英家教网 > 高中数学 > 题目详情
3.运行如图的程序框图,输出的第4个y是(  )
A.3B.-1C.0D.-3

分析 模拟程序的运行,依次写出每次循环得到的y的值,从而得解.

解答 解:模拟执行程序,可得
x=-3,
满足条件x≤3,执行循环体,y=3,第1次输出y的值为3,x=-2
满足条件x≤3,执行循环体,y=0,第2次输出y的值为0,x=-1
满足条件x≤3,执行循环体,y=-1,第3次输出y的值为-1,x=0
满足条件x≤3,执行循环体,y=0,第4次输出y的值为0,x=1

故选:C.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列四个图象,只有一个符合y=|k1x+b1|+|k2x+b2|-|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的图象,则根据你所判断的图象,k1、k2、k3之间一定满足的关系是(  )
A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,输出的结果是(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥BC,过BC作平面交AP,AE分别于点N,M,设$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ.
(1)求证:MN∥平面ABC;
(2)求λ的值,使得平面ABC与平面MNC所成的锐二面角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在区间[a-1,2a+4]的偶函数f(x)=x2+(a-b)x+1,则不等式f(x)>f(b)的解集为(  )
A.[1,2]B.[-2,-1]C.(1,2]D.[-2,-1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出的新定义,若函数f(x)的定义域和值域均为[m,n],则称[m,n]为函数f(x)的保值闭区间,已知函数f(x)=ax(a>1)存在保值闭区间,则a的取值范围是(  )
A.(1,e)B.(1,eeC.(1,2e)D.(1,e${\;}^{\frac{1}{e}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,四边形OABP是平行四边形,过点P的直线与射线OA、OB分别相交于点M、N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(Ⅰ)利用$\overrightarrow{NM}$∥$\overrightarrow{MP}$,把y用x表示出来(即求y=f(x)的解析式);
(Ⅱ)设数列{an}的首项a1=1,an=f(an-1)(n≥2且n∈N*).
①求证:数列{${\frac{1}{a_n}}$}为等差数列;
②设bn=$\frac{1}{a_n}$,cn=$\frac{2^n}{{({2^{b_n}}+1)•({2^{{b_{n+1}}}}+1)}}$,求数列{cn}前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}中,a1=2,an+1=2an+3n+1,则数列{an}的通项公式an=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

同步练习册答案