精英家教网 > 高中数学 > 题目详情
14.如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

分析 (Ⅰ)连接AB,利用P、B、F、A四点共圆,PA与圆O切于点A,得出两组角相等,即可证明:AE∥CD;
(Ⅱ)四边形PBFA的外接圆就是四边形PBOA的外接圆,OP是该外接圆的直径,由切割线定理可得PA,即可求四边形PBFA的外接圆的半径.

解答 ( I)证明:连接AB.
∵P、B、F、A四点共圆,∴∠PAB=∠PFB. …(2分)
又PA与圆O切于点A,∴∠PAB=∠AEB,…(4分)
∴∠PFB=∠AEB∴AE∥CD.…(5分)
( II)解:因为PA、PB是圆O的切线,所以P、B、O、A四点共圆,
由△PAB外接圆的唯一性可得P、B、F、A、O共圆,
四边形PBFA的外接圆就是四边形PBOA的外接圆,∴OP是该外接圆的直径.…(7分)
由切割线定理可得PA2=PC•PD=3×9=27 …(9分)
∴$OP=\sqrt{P{A^2}+O{A^2}}=\sqrt{27+25}=2\sqrt{13}$.
∴四边形PBFA的外接圆的半径为$\sqrt{13}$.…(10分)

点评 本题考查四点共圆,考查圆的切线的性质,考查切割线定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.运行如图的程序框图,输出的第4个y是(  )
A.3B.-1C.0D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如表所示:
体积(升/件)重量(公斤/件)利润(元/件)
20108
102010
在一次运输中,货物总体积不超过110升,总重量不超过100公斤,那么在合理的安排下,一次运输获得的最大利润为(  )
A.65元B.62元C.60元D.56元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≥a}\\{a{x}^{2},x<a}\end{array}\right.$,若存在实数b,使函数y=f(x)-b有且只有2个零点,则实数b的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知圆上的$\widehat{AC}$=$\widehat{BD}$,过C点的圆的切线与BA的延长线交于E点,设M是$\widehat{AC}$的中点,
(Ⅰ)证明:∠BCD=2∠ACM;
(Ⅱ)若CD=2,BC=4,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若区间(a,b)上f″(x)>0.则称函数f(x)在区间(a,b)上为“凹函数”,己知f(x)=$\frac{1}{20}$x5-$\frac{1}{12}$mx4-2x2在(1,3)上为“凹函数”.则实数m的取值范围是m≤-3..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,设倾斜角为α的直线l的方程$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+3si{n}^{2}θ}$,直线l与曲线C相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,求线段AB中点M的直角坐标;
(2)若|PA|•|PB|=|OP|2,其中P(2,$\sqrt{3}$),求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在实数集R上的函数f(x)的导函数是f′(x),下列命题中:
①当xf′(x)-f′(x)>0时,函数f(x)存在最小值;
②当xf′(x)+f(x)>0时,函数f(x)在R上单调递增;
③当f′(x)-f(x)>0时,ef(n)<f(n+1),n∈N*
④当f(1)=4,且f′(x)<3时,不等式f(lnx)>3lnx+1的解集为(0,e)
所有正确的命题是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若将函数y=cos 2x的图象向左平移$\frac{π}{12}$个单位长度,则平移后图象的对称轴为(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

同步练习册答案