精英家教网 > 高中数学 > 题目详情
4.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如表所示:
体积(升/件)重量(公斤/件)利润(元/件)
20108
102010
在一次运输中,货物总体积不超过110升,总重量不超过100公斤,那么在合理的安排下,一次运输获得的最大利润为(  )
A.65元B.62元C.60元D.56元

分析 运送甲x件,乙y件,利润为z,建立约束条件和目标函数,利用线性规划的知识进行求解即可.

解答 解:设运送甲x件,乙y件,利润为z,
则由题意得$\left\{\begin{array}{l}{20x+10y≤110}\\{10x+20y≤100}\\{x,y∈N}\end{array}\right.$,即$\left\{\begin{array}{l}{2x+y≤11}\\{x+2y≤10}\\{x,y∈N}\end{array}\right.$,且z=8x+10y,
作出不等式组对应的平面区域如图:
由z=8x+10y得y=-$\frac{4}{5}$x+$\frac{z}{10}$,
平移直线y=-$\frac{4}{5}$x+$\frac{z}{10}$,由图象知当直线y=-$\frac{4}{5}$x+$\frac{z}{10}$经过点B时,直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{2x+y=11}\\{x+2y=10}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即B(4,3),
此时z=8×4+10×3=32+30=62,
故选:B.

点评 本题主要考查线性规划的应用,设出变量,建立约束条件和目标函数,作出图象,利用线性规划的知识进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,输出的结果是(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,四边形OABP是平行四边形,过点P的直线与射线OA、OB分别相交于点M、N,若$\overrightarrow{OM}$=x$\overrightarrow{OA}$,$\overrightarrow{ON}$=y$\overrightarrow{OB}$.
(Ⅰ)利用$\overrightarrow{NM}$∥$\overrightarrow{MP}$,把y用x表示出来(即求y=f(x)的解析式);
(Ⅱ)设数列{an}的首项a1=1,an=f(an-1)(n≥2且n∈N*).
①求证:数列{${\frac{1}{a_n}}$}为等差数列;
②设bn=$\frac{1}{a_n}$,cn=$\frac{2^n}{{({2^{b_n}}+1)•({2^{{b_{n+1}}}}+1)}}$,求数列{cn}前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}中,a1=2,an+1=2an+3n+1,则数列{an}的通项公式an=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如表列联表:
感染未感染总计
服用104050
未服用203050
总计3070100
附表:
P(K2>k)0.100.050.025
k2.7063.8415.024
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d为样本容量)
参照附表,下列结论正确的是(  )
A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”
B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”
C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”
D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是递增的等差数列,Sn为{an}的前n项和,且S5=5,a3,a4,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求|a1|+|a2|+…+|a100|的值;
(Ⅲ)若集合$\{n|{(-1)^n}\frac{a_n}{2^n}>λ,n∈{N^*}\}$中有且仅有2个元素,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.锐角三角形△ABC满足b2-a2=ac,则$\frac{1}{tanA}-\frac{1}{tanB}$的取值范围为$(1,\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且f(x+2)=-f(x)恒成立,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=(  )
A.-2B.$\frac{1}{2}$C.2D.5

查看答案和解析>>

同步练习册答案