精英家教网 > 高中数学 > 题目详情
(1)求证:(1+tan);

(2)已知=1,求证:tan2θ=tanα·tanβ.

证明:(1)左边=(1+tan)=右边.

∴等式成立.

(2)∵=1,

∴sin2θ=[1-]·sin2α

=sin2α

=.

∴cos2θ=1-sin2θ=.

∴tan2θ==tanαtanβ.

∴tan2θ=tanαtanβ成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-3x+3)•ex,其定义域为[-2,t](t>-2).
(1)试确定t的范围,使得函数f(x)在区间[-2,t]上为增函数;
(2)求证:f(t)>f(-2);
(3)求证:对任意t>-2,总有x0∈(-2,t)满足
f′(x0)
ex0
=
2
3
(t-1)2
,并确定这样的x0的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=t,a2=t2,其中t>0,x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点
(Ⅰ)求数列{an}的通项公式
(Ⅱ)当t=2时,令bn=
an-1
(an+1)(an+1+1)
,数列{bn}前n项的和为Sn,求证:Sn
1
6

(Ⅲ)设cn=
1
2
an
(2n+1)(2n+1+1)
,数列{cn}前n项的和为Tn,求同时满足下列两个条件的t的值:
(1)Tn
1
6

(2)对于任意的m∈(0,
1
6
)
,均存在k∈N*,当n≥k时,Tn>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x.
(1)设函数g(x)=(1-2t)x+t2-1,当a=1,函数h(x)=f(x)+g(x)在区间(-2,4)内有两个相异的零点,求实数t的取值范围.
(2)当a>0,求证对任意两个不等的实数x1,x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(3)若x∈[0,1]时,-1≤f(x)≤1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•郑州三模)已知数列{an}的前n项和为Sn,且满足a1=1,tSn-(2t+1)Sn-1=t,其中t>0,n∈N﹡,n≥2.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t)数列{bn}满足b1=1,bn=f(
1bn-1
)(n≥2),求数列{bn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,若t=1,数列{bn}的前n项和为Tn,试比较an和Tn的大小关系.

查看答案和解析>>

同步练习册答案