精英家教网 > 高中数学 > 题目详情
已知等比数列{an}a>0,n=1,2,…,且a5•a2n-5=22n(n≥3)则当n>1时,log2a1+log2a3+log2a5+…+log2a2n-1=(  )
A、n(2n-1)B、(n+1)2C、(n-1)2D、n2
分析:由题意,等比数列{an}a>0,n=1,2,…,且a5•a2n-5=22n(n≥3),又当n>1时,log2a1+log2a3+log2a5+…+log2a2n-1=log2a1a3a5…a2n-1.由等比数列的性质m+n=s+t,aman=asat.求出a1a3a5…a2n-1的值,即可求出正确答案,得出正确选项
解答:解:由题意等比数列{an}a>0,n=1,2,…,
当n>1时,log2a1+log2a3+log2a5+…+log2a2n-1=log2a1a3a5…a2n-1
又a5•a2n-5=22n(n≥3)
∴a1a3a5…a2n-1=(2nn=2n 2
∴log2a1+log2a3+log2a5+…+log2a2n-1=log22n 2=n2
故选D
点评:本题考查数列与函数的综合,解题的关键是由对数的运算性质进行化简求值,以及由由等比数列的性质求出a1a3a5…a2n-1值,本题涉及到函数与数列,综合性强,转化灵活,本题主要训练转化的思想,利用性质求值的技能.本题易因为项数求不准而出错,解题时要注意严谨、认真,以防因为运算出错导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案