精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+bln(x+1),其中b≠0.
(Ⅰ)当b>
1
2
时,判断函数f(x)在定义域上的单调性;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)证明对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
都成立.
(Ⅰ)函数f(x)=x2+bln(x+1)的定义域在(-1,+∞)
f′(x)=2x+
b
x+1
=
2x2+2x+b
x+1

令g(x)=2x2+2x+b,则g(x)在(-
1
2
,+∞)
上递增,在(-1,-
1
2
)
上递减,g(x)min=g(-
1
2
)=-
1
2
+b,当b>
1
2
时g(x)min=-
1
2
+b>0

g(x)=2x2+2x+b>0在(-1,+∞)上恒成立,
所以f'(x)>0即当b>
1
2
,函数f(x)在定义域(-1,+∞)上单调递增.
(Ⅱ)(1)由(Ⅰ)知当b>
1
2
时函数f(x)无极值点
(2)当b=
1
2
时,f′(x)=
2(x+
1
2
)
2
x+1

x∈(-1,-
1
2
)时,f′(x)>0
x∈(-
1
2
,+∞)时,f′(x)>0

b=
1
2
时,函数f(x)在(-1,+∞)上无极值点
(3)当b<
1
2
时,解f'(x)=0得两个不同解x1=
-1-
1-2b
2
x2=
-1+
1-2b
2

当b<0时,x1=
-1-
1-2b
2
x2=
-1+
1-2b
2

∴x1∈(-∞,-1),x2∈(-1,+∞),此时f(x)在(-1,+∞)上有唯一的极小值点x2=
-1+
1-2b
2

0<b<
1
2
时,x1,x2∈(-1,+∞)f'(x)在(-1,x1),(x2,+∞)都大于0,
f'(x)在(x1,x2)上小于0,此时f(x)有一个极大值点x1=
-1-
1-2b
2
和一个极小值点x2=
-1+
1-2b
2

综上可知,b<0,时,f(x)在(-1,+∞)上有唯一的极小值点x2=
-1+
1-2b
2

0<b<
1
2
时,f(x)有一个极大值点x1=
-1-
1-2b
2
和一个极小值点x2=
-1+
1-2b
2

b≥
1
2
时,函数f(x)在(-1,+∞)上无极值点.
(Ⅲ)当b=-1时,f(x)=x2-ln(x+1).令h(x)=x3-f(x)=x3-x2+ln(x+1),则h′(x)=
3x3+(x-1)2
x+1
在[0,+∞)
上恒正
∴h(x)在[0,+∞)上单调递增,
当x∈(0,+∞)时,恒有h(x)>h(0)=0
即当x∈(0,+∞)时,有x3-x2+ln(x+1)>0,ln(x+1)>x2-x3,对任意正整数n,取x=
1
n
得ln(
1
n
+1)>
1
n2
-
1
n3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案