精英家教网 > 高中数学 > 题目详情
13.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在同一球面上,且该球的表面积为$\frac{81π}{4}$,则该棱锥的高为(  )
A.$\frac{7}{2}$B.$\frac{7}{4}$C.2$\sqrt{2}$D.$\sqrt{2}$

分析 利用条件确定球的直径,利用勾股定理,即可求棱锥的高.

解答 解:可以将四棱锥P-ABCD补成球的内接长方体,其对角线PC即为球的直径.
∵球的表面积为$\frac{81π}{4}$,
∴球的半径为$\frac{9}{4}$,
设PA=x,则PC的长等于$\sqrt{4+4+{x}^{2}}$=$\frac{81}{4}$,即x=$\frac{7}{2}$.
故选:A.

点评 本题主要考查球的表面积公式,构造长方体是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某商品销量q与售价p满足q=10-λp,总成本c与销量满足c=4+μq,销售收入r与售价及销量之间满足r=pq,其中λ,μ均为正常数,设利润=销售收入-总成本,则利润最大时的售价为(  )
A.$\frac{10-λμ}{λ}$B.$\frac{10+λμ}{λ}$C.$\frac{10-λμ}{2λ}$D.$\frac{10+λμ}{2λ}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f1(x)=$\frac{lg(1-{x}^{2})}{|{x}^{2}-2|-2}$;f2(x)=(x-1)•$\sqrt{\frac{x+1}{x-1}}$;f3(x)=loga(x+$\sqrt{{x}^{2}+1}$),(a>0,a≠1);f4(x)=x•($\frac{1}{{2}^{x}-1}+\frac{1}{2}$),(x≠0),下面关于这四个函数奇偶性的判断正确的是(  )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,在海岛A上有一座海拔$\sqrt{3}$千米的山峰上,山顶上设有一座观察站P,一艘轮船沿一固定方向匀速航行,上午10:00时,测得此船在岛北偏东20°且俯角为30°的B处,到10:10时,又测得该船在岛北偏西40°且俯角为60°的C处,则该船的航行速度为$6\sqrt{7}$千米/时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在其定义域内是增函数而且又是奇函数的是(  )
A.y=2xB.y=2|x|C.y=2x-2-xD.y=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x3+2x+1)(3x2+4)展开后各项系数的和等于28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.二项式(2x-$\frac{1}{2x}$)n(n∈N*)的展开式中,二项式系数最大的项是第4项,则其展开式中的常数项是-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}共有m(m≥3)项,记该数列前i项a1,a2,…ai中的最大项为Ai,该数列后m-i项ai+1,ai+2,…,am中的最小项为Bi,ri=Ai-Bi(i=1,2,3,…,m-1).
(1)若数列{an}的通项公式为an=2n,求数列{ri}的通项公式;
(2)若数列{an}满足a1=1,ri=-2,求数列{an}的通项公式;
(3)试构造一个数列{an},满足an=bn+cn,其中{bn}是公差不为零的等差数列,{cn}是等比数列,使得对于任意给定的正整数m,数列{ri}都是单调递增的,并说明理由.

查看答案和解析>>

同步练习册答案