精英家教网 > 高中数学 > 题目详情
2.某个西瓜开花结果时的直径是2厘米,而成熟后的直径是15厘米,这个西瓜成熟时的体积它开花结果时体积的几倍?

分析 直接利用球的体积公式计算,即可得出结论.

解答 解:∵西瓜开花结果时的直径是2厘米,
∴西瓜开花结果时的体积是$\frac{4}{3}π$立方厘米,
∵成熟后的直径是15厘米,
∴成熟后的体积是$\frac{4}{3}π$×$\frac{3375}{8}$立方厘米,
∴西瓜成熟时的体积是它开花结果时体积的$\frac{3375}{8}$倍.

点评 本题考查球的体积公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,M为椭圆C短轴的一个端点,N为椭圆上的点|NF1|max=2$\sqrt{2}$+2,△MF1F2为等腰直角三角形.
(1)求椭圆C的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若kAC•kBD=-$\frac{{b}^{2}}{{a}^{2}}$.
①求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最值;
②求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若cos($\frac{π}{4}$-α)=$\frac{3}{5}$,则sin2α=(  )
A.$\frac{7}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=$\frac{5}{4}$,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=$\sqrt{10}$.
(Ⅰ)证明:D′H⊥平面ABCD;
(Ⅱ)求二面角B-D′A-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设F为抛物线C:y2=4x的焦点,曲线y=$\frac{k}{x}$(k>0)与C交于点P,PF⊥x轴,则k=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,输出s的值为(  )
A.8B.9C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中x5的系数是-80,则实数a=-2.

查看答案和解析>>

同步练习册答案