分析 (Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;
(Ⅱ)在Rt△DFC中,GF=$\frac{1}{2}$CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.
解答
(Ⅰ)证明:∵DF⊥CE,
∴Rt△DFC∽Rt△EDC,
∴$\frac{DF}{ED}$=$\frac{CF}{CD}$,
∵DE=DG,CD=BC,
∴$\frac{DF}{DG}$=$\frac{CF}{BC}$,
又∵∠GDF=∠DEF=∠BCF,
∴△GDF∽△BCF,
∴∠CFB=∠DFG,
∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,
∴∠GFB+∠GCB=180°,
∴B,C,G,F四点共圆.
(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=$\frac{1}{2}$,
∴在Rt△DFC中,GF=$\frac{1}{2}$CD=GC,连接GB,Rt△BCG≌Rt△BFG,
∴S四边形BCGF=2S△BCG=2×$\frac{1}{2}$×1×$\frac{1}{2}$=$\frac{1}{2}$.
点评 本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -8 | B. | -6 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | t=$\frac{1}{2}$,s的最小值为$\frac{π}{6}$ | B. | t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{6}$ | ||
| C. | t=$\frac{1}{2}$,s的最小值为$\frac{π}{3}$ | D. | t=$\frac{\sqrt{3}}{2}$,s的最小值为$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| A班 | 6 6.5 7 7.5 8 |
| B班 | 6 7 8 9 10 11 12 |
| C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com