分析 (1)求出函数的导数,计算f(0),f′(0)的值,求出切线方程即可;
(2)问题转化为分别求出函数g(x)=2ex-$\frac{lnx}{x}$的取值范围和h(x)=x3ex的范围,进行比较即可.
解答 解:(1)f′(x)=ex(2-3x2-x3),
f(0)=2,f′(0)=2,
故切线方程是:y-2=2x,
即2x-y+2=0;
(2)证明:当x∈(0,1)时,2ex∈(2,2e),$\frac{lnx}{x}$<0,则-$\frac{lnx}{x}$>0,
则令g(x)=2ex-$\frac{lnx}{x}$,故g(x)>2,
设h(x)=x3ex.
则h′(x)=3x2ex+x3ex=x2ex(3+x),
当x∈(0,1),则h′(x)>0,即h(x)在(0,1)上为增函数,
则0<h(x)<e,
故当x∈(0,1)时,g(x)>h(x),
故f(x)>$\frac{lnx}{x}$.
点评 本题主要考查导数的几何意义以及不等式的证明,利用导数研究函数的单调性是解决本题的关键.综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com