精英家教网 > 高中数学 > 题目详情

可以证明, 对任意的, 有成立. 下面尝试推广该命题:

(1)       设由三项组成的数列每项均非零, 且对任意的

成立, 求所有满足条件的数列;

(2)设数列每项均非零, 且对任意的

成立, 数列的前项和为. 求证: , ;

(3)是否存在满足(2)中条件的无穷数列, 使得? 若存在, 写出一个这样的无穷数列(不需要证明它满足条件); 若不存在, 说明理由.

解:(1) 取, 有, 又, 所以.                                                (2分)

, 有, 于是, 又, 所以或2.                                                                                                          (4分)

, 有.

时, , 又, 所以.

时, , 整理得, , 所以.

综上, 所有满足条件的数列为.                                          (6分)

(2)由已知, , 用替换, 得到

.

两式相减, 有

                            (9分)

 .

, 所以, .                                                         (12分)

(3)存在. 是一个满足条件的无穷数列.                      (18分)

注: 满足(2)中条件的数列递推式为, 所以符合的数列前2012项必须为, 之后的项只需满足递推式即可, 但要注意不能出现值为0的项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•姜堰市模拟)可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2011=2009?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省泰州市姜堰市蒋垛中学高三联考数学试卷(解析版) 题型:解答题

可以证明,对任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面尝试推广该命题:
(1)设由三项组成的数列a1,a2,a3每项均非零,且对任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有满足条件的数列;
(2)设数列{an}每项均非零,且对任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,数列{an}的前n项和为Sn.求证:an+12-an+1=2Sn,n∈N*
(3)是否存在满足(2)中条件的无穷数列{an},使得a2012=-2011?若存在,写出一个这样的无穷数列(不需要证明它满足条件); 若不存在,说明理由.

查看答案和解析>>

同步练习册答案